Transmutations and Spectral Parameter Power Series in Eigenvalue Problems

  • Chapter
  • First Online:
Operator Theory, Pseudo-Differential Equations, and Mathematical Physics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 228))

Abstract

We give an overview of recent developments in Sturm-Liouville theory concerning operators of transmutation (transformation) and spectral parameter power series (SPPS). The possibility to write down the dispersion (characteristic) equations corresponding to a variety of spectral problems related to Sturm-Liouville equations in an analytic form is an attractive feature of the SPPS method. It is based on a computation of certain systems of recursive integrals. Considered as families of functions these systems are complete in the L22-space and result to be the images of the nonnegative integer powers of the independent variable under the action of a corresponding transmutation operator. This recently revealed property of the Delsarte transmutations opens the way to apply the transmutation operator even when its integral kernel is unknown and gives the possibility to obtain further interesting properties concerning the Darboux transformed Schródinger operators.

We introduce the systems of recursive integrals and the SPPS approach, explain some of its applications to spectral problems with numerical illustrations, give the definition and basic properties of transmutation operators, introduce a parametrized family of transmutation operators, study their map** properties and construct the transmutation operators for Darboux transformed Schródinger operators.

Mathematics Subject Classification (2010). Primary 34B24, 34L16, 65L15, 81Q05, 81Q60; Secondary 34L25, 34L40.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V.G. Bagrov and B.F. Samsonov, Darboux transformation, factorization, and supersymmetry in one-dimensional quantum mechanics. Teoret. Mat. Fiz. 104 (1995), no. 2, 356–367 (in Russian); translation in Theoret. and Math. Phys. 104 (1995), no. 2, 1051–1060.

    Google Scholar 

  2. C.A. Balanis, Advanced Engineering Electromagnetics. John Wiley & Sons, 1989.

    Google Scholar 

  3. H. Begehr and R. Gilbert, Transformations, transmutations and kernel functions, vol. 1–2. Longman Scientific & Technical, Harlow, 1992.

    Google Scholar 

  4. R. Bellman, Perturbation techniques in mathematics, engineering and physics. D over Publications, 2003.

    Google Scholar 

  5. J. Ben Amara and A.A. Shkalikov, A Sturm-Liouville problem with physical and spectral parameters in boundary conditions. Mathematical Notes 66 (1999), no. 2, 127–134.

    Article  MathSciNet  MATH  Google Scholar 

  6. L.M. Brekhovskikh, Waves in layered media. New York, Academic Press, 1960.

    Google Scholar 

  7. H. Campos and V.V. Kravchenko, A finite-sum representation for solutions for the Jacobi operator. Journal of Difference Equations and Applications 17 (2011) No. 4, 567–575.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Campos, V.V. Kravchenko and L. Mendez, Complete families of solutions for the Dirac equation using bicomplex function theory and transmutations. Adv. Appl. Clifford Algebras (2012), Published online. DOI: 10.1007/s00006-012-0349-1.

  9. H. Campos, V.V. Kravchenko and S. Torba, Transmutations, L-bases and complete families of solutions of the stationary Schrödinger equation in the plane. J. Math. Anal. Appl. 389 (2012), No. 2, 1222–1238.

    MathSciNet  MATH  Google Scholar 

  10. R.W. Carroll, Transmutation theory and applications. Mathematics Studies, Vol. 117, North-Holland, 1985.

    Google Scholar 

  11. J. Casahorrán, Solving smultaneously Dirac and Ricatti equations. Journal of Nonlinear Mathematical Physics 5 (1985), No. 4, 371–382.

    Article  Google Scholar 

  12. R. Castillo, K.V. Khmelnytskaya, V.V. Kravchenko and H. Oviedo, Efficient calculation of the reflectance and transmittance of finite inhomogeneous layers. J. Opt. A: Pure and Applied Optics 11 (2009), 065707.

    Article  Google Scholar 

  13. R. Castillo R, V.V. Kravchenko, H. Oviedo and V.S. Rabinovich, Dispersion equation and eigenvalues fo quantum wells using spectral parameter power series. J. Math. Phys., 52 (2011), 043522 (10 pp.)

    Google Scholar 

  14. B. Chanane, Sturm-Liouville problems with parameter dependent potential and boundary conditions. J. Comput. Appl. Math. 212 (2008), 282–290.

    Article  MathSciNet  MATH  Google Scholar 

  15. C.-Y. Chen, Exact solutions of the Dirac equation with scalar and vector Hartmann potentials. Physics Letters A. 339 (2005), 283–287.

    Article  MathSciNet  MATH  Google Scholar 

  16. A.H. Cherin, An introduction to Optical Fibers. McGraw-Hill, 1983.

    Google Scholar 

  17. W.C. Chew, Waves and fields in inhomogeneous media. Van Nostrand Reinhold, New York, 1990.

    Google Scholar 

  18. J.L. Cieśliński, Algebraic construction of the Darboux matrix revisited. J. Phys. A: Math. Theor. 42 (2009), 404003.

    Article  Google Scholar 

  19. W.J. Code and P.J. Browne, Sturm-Liouville problems with boundary conditions depending quadratically on the eigenparameter. J. Math. Anal. Appl. 309 (2005), 729–742.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Coşkun and N. Bayram, Asymptotics of eigenvalues for regular Sturm-Liouville problems with eigenvalue parameter in the boundary condition. J. Math. Anal. Appl. 306 (2005), no. 2, 548–566.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Delsarte, Sur une extension de la formule de Taylor. J Math. Pures et Appl. 17 (1938), 213–230.

    MATH  Google Scholar 

  22. J. Delsarte, Sur certaines transformations fonctionnelles relatives aux équations linéaires aux dérivées partielles du second ordre. C. R.Acad. Sc. 206 (1938), 178–182.

    Google Scholar 

  23. J. Delsarte and J.L. Lions, Transmutations d’opérateurs différentiels dans le domaine complexe. Comment. Math. Helv. 32 (1956), 113–128.

    Article  MathSciNet  Google Scholar 

  24. M.K. Fage and N.I. Nagnibida. The problem of equivalence of ordinary linear differential operators. Novosibirsk: Nauka, 1987 (in Russian).

    Google Scholar 

  25. L.B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves. IEEE Press, New York, 1994.

    Google Scholar 

  26. S. Flügge, Practical Quantum Mechanics. Berlin: Springer-Verlag, 1994.

    Google Scholar 

  27. Ch.T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), no. 3–4, 293–308.

    Article  MathSciNet  MATH  Google Scholar 

  28. P.R. Garabedian, Partial differential equations. New York–London: John Willey and Sons, 1964.

    Google Scholar 

  29. C. Gu, H. Hu, and Z. Zhou, Darboux Transformations in Integrable Systems, Springer-Verlag, Berlin, 2005.

    Google Scholar 

  30. R.L. Hall, Square-well representations for potentials in quantum mechanics. J.Math. Phys. 33 (1992), 3472–3476.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computationalb Physics of Semiconductor Nanostructures. Chichester: Wiley, 2010.

    Google Scholar 

  32. A.D. Hemery and A.P. Veselov, Whittaker-Hill equation and semifinite-gap Schrödinger operators. J. Math. Phys. 51 (2010), 072108; doi:10.1063/1.3455367.

  33. J.R. Hiller, Solution of the one-dimensional Dirac equation with a linear scalar potential. Am. J. Phys. 70(5) (2002), 522–524.

    Article  Google Scholar 

  34. C.-L. Ho, Quasi-exact solvability of Dirac equation with Lorentz scalar potential. Ann. Physics 321 (2006), No. 9, 2170–2182.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Jackiw and S.-Y. Pi, Persistence of zero modes in a gauged Dirac model for bilayer graphene. Phys. Rev. B 78 (2008), 132104.

    Article  Google Scholar 

  36. N. Kevlishvili, G. Piranishvili, Klein paradox in modified Dirac and Salpeter equations. Fizika 9 (2003), No. 3,4, 57–61.

    Google Scholar 

  37. K.V. Khmelnytskaya, V.V. Kravchenko and H.C. Rosu, Eigenvalue problems, spectral parameter power series, and modern applications. Submitted, available at ar**v:1112.1633.

    Google Scholar 

  38. K.V. Khmelnytskaya and H.C. Rosu, An amplitude-phase (Ermakov–Lewis) approach for the Jackiw–Pi model of bilayer graphene. J. Phys. A: Math. Theor. 42 (2009), 042004.

    Article  MathSciNet  Google Scholar 

  39. K.V. Khmelnytskaya and H.C. Rosu, A new series representation for Hill’s discriminant. Annals of Physics 325 (2010), 2512–2521.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Kostenko and G. Teschl, On the singular Weyl–Titchmarsh function of perturbed spherical Schrödinger operators. J. Differential Equations 250 (2011), 3701–3739.

    Article  MathSciNet  MATH  Google Scholar 

  41. V.V. Kravchenko, A representation for solutions of the Sturm-Liouville equation. Complex Variables and Elliptic Equations 53 (2008), 775–789.

    Article  MathSciNet  MATH  Google Scholar 

  42. V.V. Kravchenko, Applied pseudoanalytic function theory. Basel: Birkhäuser, Series: Frontiers in Mathematics, 2009.

    Google Scholar 

  43. V.V. Kravchenko, On the completeness of systems of recursive integrals. Communications in Mathematical Analysis, Conf. 03 (2011), 172–176.

    Google Scholar 

  44. V.V. Kravchenko, S. Morelos and S. Tremblay, Complete systems of recursive integrals and Taylor series for solutions of Sturm-Liouville equations. Mathematical Methods in the Applied Sciences, 35 (2012), 704–715.

    MathSciNet  MATH  Google Scholar 

  45. V.V. Kravchenko and R.M. Porter, Spectral parameter power series for Sturm- Liouville problems. Mathematical Methods in the Applied Sciences 33 (2010), 459– 468.

    MathSciNet  MATH  Google Scholar 

  46. V.V. Kravchenko and S. Torba, Transmutations for Darboux transformed operators with applications. J. Phys. A: Math. Theor. 45 (2012), # 075201 (21 pp.).

    Google Scholar 

  47. V.V. Kravchenko and U. Velasco-García, Dispersion equation and eigenvalues for the Zakharov-Shabat system using spectral parameter power series. J. Math. Phys. 52 (2011), 063517.

    Article  MathSciNet  Google Scholar 

  48. G.L. Lamb, Elements of soliton theory. John Wiley & Sons, New York, 1980.

    Google Scholar 

  49. B.M. Levitan, Inverse Sturm-Liouville problems. VSP, Zeist, 1987.

    Google Scholar 

  50. J.L. Lions, Solutions élémentaires de certains opérateurs différentiels á coefficients variables. Journ. De Math. 36 (1957), Fasc 1, 57–64.

    Google Scholar 

  51. V.A. Marchenko, Sturm-Liouville operators and applications. Basel: Birkhäuser, 1986.

    Google Scholar 

  52. V. Matveev and M. Salle, Darboux transformations and solitons. New York, Springer, 1991.

    Google Scholar 

  53. H. Medwin and C.S. Clay, Fundamentals of Oceanic Acoustics. Academic Press, Boston, San Diego, New York, 1997.

    Google Scholar 

  54. Y. Nogami and F.M. Toyama, Supersymmetry aspects of the Dirac equation in one dimension with a Lorentz scalar potential. Physical ReviewA. 47 (1993), no. 3, 1708– 1714.

    Article  MathSciNet  Google Scholar 

  55. L.M. Nieto, A.A. Pecheritsin and B.F. Samsonov, Intertwining technique for the one-dimensional stationary Dirac equation, Annals of Physics 305 (2003), 151–189.

    Article  MathSciNet  MATH  Google Scholar 

  56. O.A. Obrezanova and V.S. Rabinovich, Acoustic field, generated by moving source in stratified waveguides. Wave Motion 27 (1998), 155–167.

    Article  MathSciNet  MATH  Google Scholar 

  57. A.A. Pecheritsin, A.M. Pupasov and B.F. Samsonov, Singular matrix Darboux transformations in the inverse-scattering method, J. Phys. A: Math. Theor. 44 (2011), 205305.

    Article  MathSciNet  Google Scholar 

  58. C. Rogers and W.K. Schief, Backlund and Darboux transformations: geometry and modern applications in soliton theory. Cambridge University Press, 2002.

    Google Scholar 

  59. H. Rosu, Short survey of Darboux transformations, Proceedings of “Symmetries in Quantum Mechanics and Quantum Optics”, Burgos, Spain, 1999, 301–315.

    Google Scholar 

  60. R.K. Roychoudhory and Y.P. Varshni, Shifted 1/𝑁 expansion and scalar potential in the Dirac equation. J. Phys. A: Math. Gen. 20 (1987), L1083–L1087.

    Article  Google Scholar 

  61. S.M. Sitnik, Transmutations and applications: a survey. ar**v:1012.3741v1 [math. CA], originally published in the book: “Advances in Modern Analysis and Mathematical Modeling” Editors: Yu.F. Korobeinik, A.G. Kusraev, Vladikavkaz: Vladikavkaz Scientific Center of the Russian Academy of Sciences and Republic of North Ossetia– Alania, 2008, 226–293.

    Google Scholar 

  62. R. Su, Yu Zhong and S. Hu, Solutions of Dirac equation with one-dimensional scalarlike potential. Chinese Phys.Lett. 8 (1991), no. 3, 114–117.

    Google Scholar 

  63. K. Trimeche. Transmutation operators and mean-periodic functions associated with differential operators. London: Harwood Academic Publishers, 1988.

    Google Scholar 

  64. J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math. Z. 133 (1973), 301–312.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav V. Kravchenko .

Editor information

Editors and Affiliations

Additional information

Dedicated to 70th birthday anniversary of Prof. Dr. Vladimir S. Rabinovich.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Kravchenko, V.V., Torba, S.M. (2013). Transmutations and Spectral Parameter Power Series in Eigenvalue Problems. In: Karlovich, Y., Rodino, L., Silbermann, B., Spitkovsky, I. (eds) Operator Theory, Pseudo-Differential Equations, and Mathematical Physics. Operator Theory: Advances and Applications, vol 228. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0537-7_11

Download citation

Publish with us

Policies and ethics

Navigation