The Schrödinger Flow in a Compact Manifold: High-frequency Dynamics and Dispersion

  • Chapter
  • First Online:
Modern Aspects of the Theory of Partial Differential Equations

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 216))

Abstract

We discuss various aspects of the dynamics of the Schrödinger flow on a compact Riemannian manifold that are related to the behavior of highfrequency solutions. In particular we show that dispersive (Strichartz) estimates fail on manifolds whose geodesic flow is periodic (thus generalizing a well-known result for spheres proved via zonal spherical harmonics). We also address the issue of the validity of observability estimates. We show that the geometric control condition is necessary in manifolds with periodic geodesic flow and we give a new, geometric, proof of a result of Jaffard on the observability for the Schrödinger flow on the two-torus. All our proofs are based on the study of the structure of semiclassical (Wigner) measures corresponding to solutions to the Schrödinger equation.

Mathematics Subject Classification (2000). Primary 35Q40; Secondary 58J40.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arthur L. Besse. Manifolds all of whose geodesics are closed, volume 93 of Ergebnisseder Mathematik und ihrer Grenzgebiete [Results in Mathematics and RelatedAreas]. Springer-Verlag, Berlin, 1978. With appendices by D.B.A. Epstein, J.-P.Bourguignon, L. B´erard-Bergery, M. Berger and J.L. Kazdan.

    Google Scholar 

  2. J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets andapplications to nonlinear evolution equations. I. Schr¨odinger equations. Geom. Funct.Anal., 3(2):107–156, 1993.

    Google Scholar 

  3. N. Burq, P. G´erard, and N. Tzvetkov. Strichartz inequalities and the nonlinearSchr¨odinger equation on compact manifolds. Amer. J. Math., 126(3):569–605, 2004.

    Google Scholar 

  4. Nicolas Burq. Mesures semi-classiques et mesures de d´efaut. Ast´erisque, (245):Exp.No. 826, 4, 167–195, 1997. S´eminaire Bourbaki, Vol. 1996/97.

    Google Scholar 

  5. Nicolas Burq and Maciej Zworski. Control theory and high energy eigenfunctions.In Journ´ees “ ´ Equations aux D´eriv´ees Partielles”, pages Exp. No. XIII, 10. ´EcolePolytech., Palaiseau, 2004.

    Google Scholar 

  6. Nicolas Burq and Maciej Zworski. Geometric control in the presence of a black box.J. Amer. Math. Soc., 17(2):443–471 (electronic), 2004.

    Google Scholar 

  7. R´emi Carles, Clotilde Fermanian-Kammerer, Norbert J. Mauser, and Hans PeterStimming. On the time evolution of Wigner measures for Schr¨odinger equations.Commun. Pure Appl. Anal., 8(2):559–585, 2009.

    Google Scholar 

  8. Yves Colin de Verdi`ere. Sur le spectre des op´erateurs elliptiques `a bicaract´eristiquestoutes p´eriodiques. Comment. Math. Helv., 54(3):508–522, 1979.

    Google Scholar 

  9. B. Dehman, P. G´erard, and G. Lebeau. Stabilization and control for the nonlinearSchr¨odinger equation on a compact surface. Math. Z., 254(4):729–749, 2006.

    Google Scholar 

  10. J.J. Duistermaat and V.W. Guillemin. The spectrum of positive elliptic operatorsand periodic bicharacteristics. Invent. Math., 29(1):39–79, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawrence C. Evans and Maciej Zworski. Lectures on semiclassical analysis. 2009.Avalaible at: http://www.math.berkeley.edu/ zworski/semiclassical.pdf.

  12. C. Fermanian Kammerer. Propagation and absorption of concentration effects nearshock hypersurfaces for the heat equation. Asymptot. Anal., 24(2):107–141, 2000.

    MathSciNet  MATH  Google Scholar 

  13. Clotilde Fermanian-Kammerer. Mesures semi-classiques 2-microlocales. C. R. Acad.Sci. Paris S´er. I Math., 331(7):515–518, 2000.

    Google Scholar 

  14. Clotilde Fermanian-Kammerer and Patrick G´erard. Mesures semi-classiques etcroisement de modes. Bull. Soc. Math. France, 130(1):123–168, 2002.

    Google Scholar 

  15. P. G´erard. Mesures semi-classiques et ondes de Bloch. In S´eminaire sur les ´ Equationsaux D´eriv´ees Partielles, 19901991, pages Exp. No. XVI, 19. ´Ecole Polytech.,Palaiseau, 1991.

    Google Scholar 

  16. Patrick G´erard and ´Eric Leichtnam. Ergodic properties of eigenfunctions for theDirichlet problem. Duke Math. J., 71(2):559–607, 1993.

    Google Scholar 

  17. Patrick G´erard, Peter A. Markowich, Norbert J. Mauser, and Fr´ed´eric Poupaud.Homogenization limits andWigner transforms. Comm. Pure Appl. Math., 50(4):323–379, 1997.

    Google Scholar 

  18. Victor Isakov. Inverse problems for partial differential equations, volume 127 of AppliedMathematical Sciences. Springer, New York, second edition, 2006.

    Google Scholar 

  19. S. Jaffard. Contrˆole interne exact des vibrations d’une plaque rectangulaire. Portugal.Math., 47(4):423–429, 1990.

    MathSciNet  MATH  Google Scholar 

  20. G. Lebeau. Contrˆole de l’´equation de Schr¨odinger. J. Math. Pures Appl. (9),71(3):267–291, 1992.

    Google Scholar 

  21. G. Lebeau. ´ Equation des ondes amorties. In Algebraic and geometric methods inmathematical physics (Kaciveli, 1993), volume 19 of Math. Phys. Stud., pages 73–109. Kluwer Acad. Publ., Dordrecht, 1996.

    Google Scholar 

  22. J.-L. Lions. Exact controllability, stabilization and perturbations for distributed systems.SIAM Rev., 30(1):1–68, 1988.

    Google Scholar 

  23. Pierre-Louis Lions and Thierry Paul. Sur les mesures de Wigner. Rev. Mat.Iberoamericana, 9(3):553–618, 1993.

    Google Scholar 

  24. Fabricio Maci`a. Semiclassical measures and the Schr¨odinger flow on Riemannianmanifolds. Nonlinearity, 22(5):1003–1020, 2009.

    Google Scholar 

  25. Fabricio Maci`a. High-frequency propagation for the Schr¨odinger equation on thetorus. J. Funct. Anal., 258(3):933–955, 2010.

    Google Scholar 

  26. Andr´e Martinez. An introduction to semiclassical and microlocal analysis. Universitext.Springer-Verlag, New York, 2002.

    Google Scholar 

  27. Jeremy Marzuola. Eigenfunctions for partially rectangular billiards. Comm. PartialDifferential Equations, 31(4-6):775–790, 2006.

    Google Scholar 

  28. Luc Miller. Propagation d’ondes semi-classiques `a travers une interface et mesures2-microlocales. Ph. D. Thesis. ´Ecole Polytechnique, Palaiseau, 1996.

    Google Scholar 

  29. Francis Nier. A semi-classical picture of quantum scattering. Ann. Sci. ´ Ecole Norm.Sup. (4), 29(2):149–183, 1996.

    Google Scholar 

  30. Christopher D. Sogge. Fourier integrals in classical analysis, volume 105 of CambridgeTracts in Mathematics. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  31. Christof Sparber, Peter A. Markowich, and Norbert J. Mauser. Wigner functionsversus WKB-methods in multivalued geometrical optics. Asymptot. Anal., 33(2):153–187, 2003.

    Google Scholar 

  32. A. Zygmund. On Fourier coefficients and transforms of functions of two variables.Studia Math., 50:189–201, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Macià .

Editor information

Editors and Affiliations

Additional information

Communicated by V. Smyshlyaev

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Macià, F. (2011). The Schrödinger Flow in a Compact Manifold: High-frequency Dynamics and Dispersion. In: Ruzhansky, M., Wirth, J. (eds) Modern Aspects of the Theory of Partial Differential Equations. Operator Theory: Advances and Applications(), vol 216. Springer, Basel. https://doi.org/10.1007/978-3-0348-0069-3_16

Download citation

Publish with us

Policies and ethics

Navigation