CFD Analysis of Turbine Cascade Unsteady Aerodynamics Using a Hybrid POD Technique

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 (ICCSA 2024)

Abstract

This study presents a computational investigation into the unsteady aerodynamics of a low-pressure turbine cascade, utilizing computational fluid dynamics (CFD) with a primary focus on enhancing efficiency. The proposed approach combines a classical proper orthogonal decomposition with a modern machine learning technique. This hybrid methodology demonstrates its effectiveness by accurately predicting the unsteady flow over the turbine blade. Crucially, the solution retains the essential features of the original physics-based computational model. This study represents a potential significant advancement in improving the efficiency of CFD solutions, enabling future resource-conscious scale-resolving simulations of complex aerodynamic flows without sacrificing solution accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 63.34
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 78.06
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Besem, F.M., Kielb, R.E.: Influence of the tip clearance on a compressor blade aerodynamic dam**. J. Propuls. Power 33, 227–233 (2017)

    Article  Google Scholar 

  2. Rahmati, M.T., He, L., Wells, R.G.: Interface treatment for harmonic solution in multi-row aeromechanic analysis. In: Turbo Expo: Power for Land, Sea, and Air, vol. 4, pp. 1253–1261 (2010)

    Google Scholar 

  3. Rahmati, M.T., He, L., Wang, D.X., Li, Y.S., Wells, R.G., Krishnababu, S.K.: Nonlinear time and frequency domain methods for multirow aeromechanical analysis. J. Turbomach. Trans. ASME 136, 041010 (2014)

    Article  Google Scholar 

  4. Liu, J., Song, W.-P., Han, Z.-H., Zhang, Y.: Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models. Struct. Multidiscip. Optim. 55, 925–943 (2017)

    Article  Google Scholar 

  5. Rossano, V., De Stefano, G.: Testing a generalized two-equation turbulence model for computational aerodynamics of a mid-range aircraft. Appl. Sci. 13, 11243 (2023)

    Article  Google Scholar 

  6. Zhu, J., Liu, L., Liu, T., Shi, Y., Su, W., Wu, J.: Lift and drag in two-dimensional steady viscous and compressible flow: I. far-field formulae analysis and numerical confirmation. In: 45th AIAA Fluid Dynamics Conference, vol. 2305 (2015)

    Google Scholar 

  7. Pan, Y., An, X., Lei, Y., Ji, C.: An improved neural network for modeling airfoil’s unsteady aerodynamics in transonic flow. Phys. Fluids 36(1), (2024)

    Google Scholar 

  8. Fonzi, N., Brunton, S.L., Fasel, U.: Data-driven modeling for transonic aeroelastic analysis. J. Aircraft 61(2), 625–637 (2024)

    Article  Google Scholar 

  9. Iyer, A.S., et al.: High-order accurate direct numerical simulation of flow over a MTU-T161 low pressure turbine blade. Comput. Fluids 226, 104989 (2021)

    Article  MathSciNet  Google Scholar 

  10. ANSYS Inc., ANSYS Fluent (Version 23R1)

    Google Scholar 

  11. De Stefano, G., Denaro. F.M., Riccardi, G.: High-order filtering for control volume flow simulation. Int. J. Numer. Meth. Fluids 37, 797–835 (2001)

    Google Scholar 

  12. Rossano, V., Cittadini, A., De Stefano, G.: Computational evaluation of shock wave interaction with a liquid droplet. Appl. Sci. 12, 1349 (2022)

    Article  Google Scholar 

  13. Rossano, V., De Stefano, G.: Hybrid VOF-Lagrangian CFD modeling of droplet aerobreakup. Appl. Sci. 12, 8302 (2022)

    Article  Google Scholar 

  14. Salomone, T., Piomelli, U., De Stefano, G.: Wall-modeled and hybrid large-eddy simulations of the flow over roughness strips fluids 8, 10 (2023)

    Google Scholar 

  15. Mendez, M.A., Ianiro, A., Noack, B.R., Brunton, S.L.: Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning. Cambridge University Press (2023)

    Google Scholar 

  16. Rossano, V., De Stefano, G.: Scale-resolving simulation of shock-induced aerobreakup of water droplet. Computation 12, 71 (2024)

    Article  Google Scholar 

  17. Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  18. Sirovich, L.: Turbulence and the dynamics of coherent structure. Part I, II, III. Quat. Appl. Math. 3, 583 (1987)

    Google Scholar 

  19. Duggleby, A., Paul, M.R.: Computing the Karhunen-Loève dimension of an extensively chaotic flow field given a finite amount of data. Comput. Fluids 39(9), 1704–1710 (2010)

    Article  MathSciNet  Google Scholar 

  20. Gorder, R.: Use of proper orthogonal decomposition in the analysis of turbulent flows. Report, Fluid Turbulence Course, University of Washington (2010)

    Google Scholar 

  21. **e, C., Yuan, Z., Wang, J.: Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence. Phys. Fluids 32, 116610 (2020)

    Article  Google Scholar 

  22. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano De Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skilskyy, V., Rossano, V., De Stefano, G. (2024). CFD Analysis of Turbine Cascade Unsteady Aerodynamics Using a Hybrid POD Technique. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024. ICCSA 2024. Lecture Notes in Computer Science, vol 14814. Springer, Cham. https://doi.org/10.1007/978-3-031-64608-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64608-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64607-2

  • Online ISBN: 978-3-031-64608-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation