An Innovative Approach for Long ECG Synthesis with Wasserstein GAN Model

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 (ICCSA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14814))

Included in the following conference series:

  • 136 Accesses

Abstract

Deep neural networks (DNNs) have set new standards in identifying and classifying irregular patterns in ECG (electrocardiogram) signals, surpassing previous methods. Despite the easy access and affordability of ECG sensors, a critical bottleneck remains the limited availability of reliable data for complex heart rhythms like second and third-degree atrioventricular block, ventricular tachycardia, and supraventricular tachycardia. This shortage has been a significant obstacle to improving DNN algorithms. Recent studies have turned to Generative Adversarial Networks (GANs) to create synthetic ECG data, enhancing the diversity of training datasets. However, much of this research has only managed to produce basic ECG components, missing the intricate details found in real patient data that includes multiple heartbeats. Our research has taken a groundbreaking approach by converting ECG signals into a two-dimensional format, allowing us to utilize advanced GAN models originally developed for image processing. This method has enabled us to generate extended, realistic ECG sequences closely mimicking those from actual patients. We have tested and refined our model using two databases, Physionet and Chapman, and have successfully produced 10-second ECG sequences showcasing a variety of heart rhythms previously unachieved in other studies. Our innovative technique not only surpasses existing methods in generating high-quality, realistic ECG data but also sets a new benchmark in ECG synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hossain, K.F., et al.: ECG-Adv-GAN: Detecting ECG adversarial examples with conditional generative adversarial networks. In: 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 50–56, IEEE (2021)

    Google Scholar 

  2. Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., Ng, A.Y.: Cardiologist-level arrhythmia detection with convolutional neural networks. ar**v preprint ar**v:1707.01836 (2017)

  3. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  4. Li, X., Metsis, V., Wang, H., Ngu, A.H.H.: TTS-GAN: a transformer-based time-series generative adversarial network. ar**v preprint ar**v:2202.02691 (2022)

  5. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  6. Su, J., **, Z., Finkelstein, A.: HIFI-GAN-2: studio-quality speech enhancement via generative adversarial networks conditioned on acoustic features. In: 2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 166–170, IEEE (2021)

    Google Scholar 

  7. Zhang, Y.-H., Babaeizadeh, S.: Synthesis of standard 12-lead electrocardiograms using two-dimensional generative adversarial networks. J. Electrocardiol. 69, 6–14 (2021)

    Article  Google Scholar 

  8. Brophy, E.: Synthesis of dependent multichannel ECG using generative adversarial networks. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 3229–3232 (2020)

    Google Scholar 

  9. Adib, E., Fernandez, A.S., Afghah, F., Prevost, J.J.: Synthetic ECG signal generation using probabilistic diffusion models. IEEE Access 11, 75818–75828 (2023)

    Article  Google Scholar 

  10. Vo, K., et al.: P2E-WGAN: ECG waveform synthesis from PPG with conditional wasserstein generative adversarial networks. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing, pp. 1030–1036 (2021)

    Google Scholar 

  11. Tran, D.T., Tran, Q.N., Dang, T.T.K., Tran, D.H.: A novel approach for long ECG synthesis utilize diffusion probabilistic model. In: Proceedings of the 2023 8th International Conference on Intelligent Information Technology, pp. 251–258 (2023)

    Google Scholar 

  12. Alcaraz, J.M.L., Strodthoff, N.: Diffusion-based conditional ECG generation with structured state space models. Comput. Biol. Med. 163, 107115 (2023)

    Google Scholar 

  13. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. ar**v preprint ar**v:1511.06434 (2015)

  14. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  15. Zheng, J., Zhang, J., Danioko, S., Yao, H., Guo, H., Rakovski, C.: A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients. Sci. Data 7(1), 1–8 (2020)

    Article  Google Scholar 

  16. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN, vol. 30, no. 4,ar**v preprint ar**v:1701.07875 (2017)

  17. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number DS2024-26-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Diem Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, T.D., Dang, T.T.K., Tran, N.Q. (2024). An Innovative Approach for Long ECG Synthesis with Wasserstein GAN Model. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024. ICCSA 2024. Lecture Notes in Computer Science, vol 14814. Springer, Cham. https://doi.org/10.1007/978-3-031-64608-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-64608-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-64607-2

  • Online ISBN: 978-3-031-64608-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation