Decision Predicate Graphs: Enhancing Interpretability in Tree Ensembles

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2024)

Abstract

Understanding the decisions of tree-based ensembles and their relationships is pivotal for machine learning model interpretation. Recent attempts to mitigate the human-in-the-loop interpretation challenge have explored the extraction of the decision structure underlying the model taking advantage of graph simplification and path emphasis. However, while these efforts enhance the visualisation experience, they may either result in a visually complex representation or compromise the interpretability of the original ensemble model. In addressing this challenge, especially in complex scenarios, we introduce the Decision Predicate Graph (DPG) as a model-specific tool to provide a global interpretation of the model. DPG is a graph structure that captures the tree-based ensemble model and learned dataset details, preserving the relations among features, logical decisions, and predictions towards emphasising insightful points. Leveraging well-known graph theory concepts, such as the notions of centrality and community, DPG offers additional quantitative insights into the model, complementing visualisation techniques, expanding the problem space descriptions, and offering diverse possibilities for extensions. Empirical experiments demonstrate the potential of DPG in addressing traditional benchmarks and complex classification scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/LeonardoArrighi/DPG.

  2. 2.

    https://github.com/LeonardoArrighi/DPG/datasets.

  3. 3.

    https://github.com/LeonardoArrighi/DPG.

  4. 4.

    https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html.

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052

    Article  Google Scholar 

  2. Aria, M., Cuccurullo, C., Gnasso, A.: A comparison among interpretative proposals for random forests. Mach. Learn. Appl. 6, 100094 (2021). https://doi.org/10.1016/j.mlwa.2021.100094

    Article  Google Scholar 

  3. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation 30(2), 136–145 (2008). https://doi.org/10.1016/j.socnet.2007.11.001

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  5. Chimatapu, R., Hagras, H., Starkey, A., Owusu, G.: Explainable AI and fuzzy logic systems. In: Fagan, D., Martín-Vide, C., O’Neill, M., Vega-Rodríguez, M.A. (eds.) TPNC 2018. LNCS, vol. 11324, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04070-3_1

    Chapter  Google Scholar 

  6. Chipman, H., George, E., McCulloch, R.: Making sense of a forest of trees. In: Proceedings of the 30th Symposium on the Interface, vol. 29 (1998)

    Google Scholar 

  7. Dedja, K., Nakano, F.K., Pliakos, K., Vens, C.: BELLATREX: building explanations through a LocaLly AccuraTe rule EXtractor. IEEE Access 11, 41348–41367 (2023). https://doi.org/10.1109/ACCESS.2023.3268866

    Article  Google Scholar 

  8. Deng, H.: Interpreting tree ensembles with inTrees. Int. J. Data Sci. Anal. 7(4), 277–287 (2019). https://doi.org/10.1007/s41060-018-0144-8

    Article  Google Scholar 

  9. Dwivedi, R., et al.: Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Comput. Surv. 55(9), 194:1–194:33 (2023). https://doi.org/10.1145/3561048

  10. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936). https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

    Article  Google Scholar 

  11. Florio, A.M., Martins, P., Schiffer, M., Serra, T., Vidal, T.: Optimal decision diagrams for classification. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 7577–7585 (2023). https://doi.org/10.1609/aaai.v37i6.25920

  12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  13. Gossen, F., Steffen, B.: Algebraic aggregation of random forests: towards explainability and rapid evaluation. Int. J. Softw. Tools Technol. Transfer 25(3), 1–19 (2021). https://doi.org/10.1007/s10009-021-00635-x

    Article  Google Scholar 

  14. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5) (2018). https://doi.org/10.1145/3236009

  15. Gulowaty, B., Woźniak, M.: Extracting interpretable decision tree ensemble from random forest. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  16. Haddouchi, M., Berrado, A.: A survey of methods and tools used for interpreting random forest. In: 2019 1st International Conference on Smart Systems and Data Science (ICSSD), pp. 1–6 (2019). https://doi.org/10.1109/ICSSD47982.2019.9002770

  17. Hanif, A., Zhang, X., Wood, S.: A survey on explainable artificial intelligence techniques and challenges. In: 2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 81–89 (2021). https://doi.org/10.1109/EDOCW52865.2021.00036, ISSN: 2325-6605

  18. Hara, S., Hayashi, K.: Making tree ensembles interpretable: a bayesian model selection approach. In: Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, pp. 77–85. PMLR (2018), ISSN: 2640-3498

    Google Scholar 

  19. Hastie, T., Tibshirani, R., Friedman, J.: Additive models, trees, and related methods. In: The Elements of Statistical Learning. SSS, pp. 295–336. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7_9

    Chapter  Google Scholar 

  20. Hatwell, J., Gaber, M.M., Azad, R.M.A.: CHIRPS: explaining random forest classification. Artif. Intell. Rev. 53(8), 5747–5788 (2020). https://doi.org/10.1007/s10462-020-09833-6

    Article  Google Scholar 

  21. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition. vol. 1, pp. 278–282 vol.1 (1995). https://doi.org/10.1109/ICDAR.1995.598994

  22. Ignatov, D., Ignatov, A.: Decision stream: Cultivating deep decision trees. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 905–912. IEEE (2017). https://doi.org/10.1109/ICTAI.2017.00140

  23. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4768–4777. NIPS’17, Curran Associates Inc. (2017)

    Google Scholar 

  24. Malekloo, A., Ozer, E., AlHamaydeh, M., Girolami, M.: Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Struct. Health Monit. 21(4), 1906–1955 (2022). https://doi.org/10.1177/14759217211036880

    Article  Google Scholar 

  25. Mashayekhi, M., Gras, R.: Rule extraction from random forest: the RF+HC methods. In: Barbosa, D., Milios, E. (eds.) CANADIAN AI 2015. LNCS (LNAI), vol. 9091, pp. 223–237. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18356-5_20

    Chapter  Google Scholar 

  26. Mienye, I.D., Sun, Y.: A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access 10, 99129–99149 (2022). https://doi.org/10.1109/ACCESS.2022.3207287

    Article  Google Scholar 

  27. Mones, E., Vicsek, L., Vicsek, T.: Hierarchy measure for complex networks. PLoS ONE 7(3), e33799 (2012). https://doi.org/10.1371/journal.pone.0033799

    Article  Google Scholar 

  28. Murtovi, A., Bainczyk, A., Nolte, G., Schlüter, M., Steffen, B.: Forest GUMP: a tool for verification and explanation. Int. J. Softw. Tools Technol. Transfer 25(3), 287–299 (2023). https://doi.org/10.1007/s10009-023-00702-5

    Article  Google Scholar 

  29. Nakahara, H., **guji, A., Sato, S., Sasao, T.: A random forest using a multi-valued decision diagram on an FPGA. In: 2017 IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL), pp. 266–271 (2017). https://doi.org/10.1109/ISMVL.2017.40, ISSN: 2378-2226

  30. Needham, S., Dowe, D.L.: Message length as an effective Ockham’s razor in decision tree induction. In: International Workshop on Artificial Intelligence and Statistics, pp. 216–223. PMLR (2001), ISSN: 2640-3498

    Google Scholar 

  31. Neto, M.P., Paulovich, F.V.: Explainable matrix - visualization for global and local interpretability of random forest classification ensembles. IEEE Trans. Visual Comput. Graph. 27(2), 1427–1437 (2020). https://doi.org/10.1109/TVCG.2020.3030354

    Article  Google Scholar 

  32. Oliver, J.: Decision graphs - an extension of decision trees. Citeseer (1992)

    Google Scholar 

  33. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. In: Proceedings of the National Academy of Sciences. vol. 101, pp. 2658–2663 (2004). https://doi.org/10.1073/pnas.0400054101

  34. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007). https://doi.org/10.1103/PhysRevE.76.036106

    Article  Google Scholar 

  35. Ribeiro, M.T., Singh, S., Guestrin, C.: "why should i trust you?": Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. KDD ’16, Association for Computing Machinery (2016). https://doi.org/10.1145/2939672.2939778

  36. Ribeiro, M., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic explanations. In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 1527–1535 (2018)

    Google Scholar 

  37. Silva, O., Silva, A., Moreira, I., Nacif, J., Ferreira, R.: RDSF: Everything at same place all at once - a random decision single forest. In: Anais do XIII Simpósio Brasileiro de Engenharia de Sistemas Computacionais (2023)

    Google Scholar 

  38. Tan, P.J., Dowe, D.L.: MML inference of decision graphs with multi-way joins and dynamic attributes. In: Gedeon, T.T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 269–281. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24581-0_23

    Chapter  Google Scholar 

  39. Van Assche, A., Blockeel, H.: Seeing the forest through the trees: learning a comprehensible model from an ensemble. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 418–429. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_39

    Chapter  Google Scholar 

  40. Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Information Science and Statistics, Springer-Verlag (2005). https://doi.org/10.1007/0-387-27656-4

  41. Zhao, X., Wu, Y., Lee, D.L., Cui, W.: iForest: interpreting random forests via visual analytics. IEEE Trans. Visual Comput. Graphics 25(1), 407–416 (2019). https://doi.org/10.1109/TVCG.2018.2864475

    Article  Google Scholar 

  42. Zhou, Y., Hooker, G.: Interpreting models via single tree approximation (2016)

    Google Scholar 

  43. Zhu, B., Shoaran, M.: Tree in tree: from decision trees to decision graphs. Adv. Neural. Inf. Process. Syst. 34, 13707–13718 (2021)

    Google Scholar 

Download references

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardo Arrighi or Luca Pennella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arrighi, L., Pennella, L., Marques Tavares, G., Barbon Junior, S. (2024). Decision Predicate Graphs: Enhancing Interpretability in Tree Ensembles. In: Longo, L., Lapuschkin, S., Seifert, C. (eds) Explainable Artificial Intelligence. xAI 2024. Communications in Computer and Information Science, vol 2154. Springer, Cham. https://doi.org/10.1007/978-3-031-63797-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63797-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63796-4

  • Online ISBN: 978-3-031-63797-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation