Design Improvement of the Rotary-Pulsation Device by Resonance Phenomena

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing VII (DSMIE 2024)

Abstract

Design improvement for increasing the energy efficiency of machines and equipment in the food industry is particularly relevant to the current state of the world's economies. If the energy consumption for the homogenization process is reduced to 1.5–2.5 kW/h, the total energy consumption in the drinking milk production line will decrease by 40–50%. For this purpose, the rotor-pulsation device is proposed to be improved by applying vibrations to the processed medium due to the vibrations along the rotor's axis. For such a homogenizer, the characteristic variants of the synchronization of the rotation and oscillation phases of the rotor are analyzed, which include the ratio between the rotation frequencies of the rotor and the crank and the shift between the rotation angles of the rotor and the crank. To increase the efficiency of the milk emulsion dispersion process, based on the sliding speed of the fat globule relative to the milk plasma, the optimal synchronization option has been determined, in which the frequency of pulsations caused by the rotational and oscillating movements of the rotor is the same. The nature of the speed change is similar. This leads to the emergence of pulsation resonance, which increases the amplitude of oscillations, the speed of sliding, and, therefore, the degree of dispersion. The rate equation for this operation mode of the homogenizer has been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhankhar, P.: Homogenization fundamentals. IOSR J. Eng. 4, 1–8 (2014). https://doi.org/10.9790/3021-04540108

    Article  Google Scholar 

  2. Lee, C., Chang, C., Wang, Y., Fu, L.: Microfluidic Mixing: a review. IJMS 12(5), 3263–3287 (2011). https://doi.org/10.3390/ijms12053263

    Article  Google Scholar 

  3. Innings, F., Trägårdh, C.: Visualization of the drop deformation and break-up process in a high-pressure disperser. Chem. Eng. Technol. 28, 882–891 (2005). https://doi.org/10.1002/ceat.200500080

    Article  Google Scholar 

  4. Trusova, N.V., Hryvkivska, O.V., Tanklevska, N.S., Vdovenko, L.A., Prystemskyi, O.S., Skrypnyk, S.V.: Regional aspect of formation: the potential of financial safety in Agrarian enterprises of Ukraine. Asia Life Sci. 1, 169–186 (2019)

    Google Scholar 

  5. European Green Deal, EU, https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en. Accessed 01 Nov 2023

  6. Trusova, N.V., Kohut, I.A., Osypenko, S.A., Radchenko, N.G., Rubtsova, N.N.: European union countries. J. Adv. Res. Law Econ. 10(6), 1649–1663 (2019). https://doi.org/10.14505/jarle.v10.6(44).07

    Article  Google Scholar 

  7. Delivering the European Green Deal, EU. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en. Accessed 02 Nov 2023

  8. Fialkova, E.A.: Homogenization. New View. Monograph-reference book. GIORD (2006)

    Google Scholar 

  9. Liu, C., Li, M., Liang, C., Wang, W.: Measurement and analysis of bimodal drop size distribution in a rotor-stator homogenizer. Chem. Eng. Sci. 102, 622–631 (2013). https://doi.org/10.1016/j.ces.2013.08.030

    Article  Google Scholar 

  10. Tartar, Luc: The General Theory of Homogenization: A Personalized Introduction. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-05195-1

    Book  Google Scholar 

  11. Delmas, H., Barthe, L.: 25 – Ultrasonic mixing, homogenization, and emulsification in food processing and other applications. In: Gallego-Juárez, J.A., Graff, K.F. (eds.) Power Ultrasonics, pp. 757–791. Woodhead Publishing (2015). https://doi.org/10.1016/B978-1-78242-028-6.00025-9

  12. Mohammadi, V., Ghasemi-Varnamkhasti, M., Ebrahimi, R., Abbasvali, M.: Ultrasonic techniques for the milk production industry. Meas. J. Int. Meas. Confed. MSRMD 58, 93–102 (2014). https://doi.org/10.1016/j.measurement.2014.08.022

    Article  Google Scholar 

  13. Huppertz, T.: Homogenization of milk/other types of homogenizer (high-speed mixing, ultrasonics, microfluidizers, membrane emulsification). In: Encyclopedia of Dairy Sciences (Second Edition), pp. 761–764 (2011). https://doi.org/10.1016/B978-0-12-374407-4.00226-0

  14. Kiurchev, S., Abdullo, M.A., Vlasenko, T., Prasol, S., Verkholantseva, V.: Automated control of the gear profile for the gerotor hydraulic machine. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds.) Advanced Manufacturing Processes IV: Selected Papers, pp. 32–43. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-16651-8_4

    Chapter  Google Scholar 

  15. Lyapunov, N.A., Bezuglaya, E.P., Lyapunov, A.N., Zinchenko, I.A., Bryleva, K., Lysokobilka, A.A.: Laboratory equipment during pharmaceutical development of semi-solid preparations. Drug Dev. Reg. 8(1), 29–36 (2019). https://doi.org/10.33380/2305-2066-2019-8-1-29-36

    Article  Google Scholar 

  16. Pravinata, L., Akhtar, M., Bentley, P.J., Mahatnirunkul, T., Murray, B.S.: Preparation of alginate microgels in a simple one step process via the Leeds Jet Homogenizer. Food Hydrocolloids 61, 77–841 (2016). https://doi.org/10.1016/j.foodhyd.2016.04.025

    Article  Google Scholar 

  17. Samoichuk, K., et al.: Research on milk homogenization in the stream disperser with separate cream feeding. Potravinarstvo Slovak J. Food Sci. 14, 142–148 (2020). https://doi.org/10.5219/1289

    Article  Google Scholar 

  18. Håkanssona, A., Fuchs, L., Innings, F., Laszlo, F., Bergenstahl, B., Tragardh, C.: Visual observations and acoustic measurements of cavitation in an experimental model of a high-pressure homogenizers. J. Food Eng. 100(3), 504–513 (2010). https://doi.org/10.1016/j.jfoodeng.2010.04.038

    Article  Google Scholar 

  19. Wang, X., et al.: Scale-up of microreactor: Effects of hydrodynamic diameter on liquid–liquid flow and mass transfer. Chem. Eng. Sci. 226, 115838 (2020). https://doi.org/10.1016/j.ces.2020.115838

    Article  Google Scholar 

  20. Samoichuk, K., Zahorko, N., Oleksiienko, V., Petrychenko, S.: Generalization of factors of milk homogenization. In: Nadykto, V. (ed.) Modern Development Paths of Agricultural Production: Trends and Innovations, pp. 191–197. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-14918-5_21

    Chapter  Google Scholar 

  21. Ciron, C., Gee, V., Kelly, A., Auty, M.: Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. Int. Dairy J. 20, 314–320 (2010). https://doi.org/10.1016/j.idairyj.2009.11.018

    Article  Google Scholar 

  22. Håkansson, A., Fuchs, L., Innings, F., Revstedt, J., Trägårdh, C., Bergenståhl, B.: Velocity measurements of turbulent two-phase flow in a high-pressure disperser model. Chem. Eng. Commun. 200, 93–114 (2013). https://doi.org/10.1080/00986445.2012.691921

    Article  Google Scholar 

  23. Yong, A., Islam, M., Hasan, N.: The effect of pH and high-pressure homogenization on droplet size. Sigma J. Eng. Nat. Sci. 35, 1–22 (2017). https://doi.org/10.26776/IJEMM.02.04.2017.05

    Article  Google Scholar 

  24. Promtov, M.A., Monastirsky, M.X.: Dynamic of cavitational bubbles in rotor impuls apparatus. J. Qingdao Just Chem. Techn. 21(4), 318–321 (2000)

    Google Scholar 

  25. Shurchkova, Y.: New class of devices for liquid dispersion via discrete-pulsed energy input. Heat Transf. Res. 30(1), 1–9 (1999)

    Google Scholar 

  26. Panchenko, A., Voloshina, A., Titova, O., Panchenko, I., Caldare, A.: Design of hydraulic mechatronic systems with specified output characteristics. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) Advances in Design, Simulation and Manufacturing III. LNME, pp. 42–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_5

    Chapter  Google Scholar 

  27. Voloshina, A., Panchenko, A., Boltyansky, O., Titova, O.: Improvement of manufacture workability for distribution systems of planetary hydraulic machines. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. LNME, pp. 732–741. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_73

    Chapter  Google Scholar 

  28. Yildirim Erbil, H.: Evaporation of pure liquid sessile and spherical suspended drops: a review. Adv. Colloid Interface Sci. 170(1–2), 67–86 (2012). https://doi.org/10.1016/j.cis.2011.12.006

    Article  Google Scholar 

  29. Vladisavljevic, G., Al Nuumani, R., Nabavi, S.: Microfluidic production of multiple emulsions. Micromachines 8, 75 (2017). https://doi.org/10.3390/mi8030075

    Article  Google Scholar 

  30. Ward, K., Fan, Z.H.: Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng. 25(9), 94001–94017 (2015). https://doi.org/10.1088/0960-1317/25/9/094001

    Article  Google Scholar 

  31. Capretto, L., Cheng, W., Hill, M., Zhang, X.: Micromixing within microfluidic devices. Top. Curr. Chem. 304, 27–68 (2011). https://doi.org/10.1007/128_2011_150

    Article  Google Scholar 

  32. Cai, G., Xue, L., Zhang, H., Lin, J.A.: Review on micromixers. Micromachines 8(9), 274–300 (2017). https://doi.org/10.3390/mi8090274

    Article  Google Scholar 

  33. Acharyaa, S., Mishrab, V., Patelc, J.: Enhancing the mixing process of two miscible fluids: a review. AIP Conf. Proc. 2341, 030025 (2021). https://doi.org/10.1063/5.0051818

    Article  Google Scholar 

  34. Di Marzo, L., Cree, P., Barbano, D.: Prediction of fat globule particle size in homogenized milk using Fourier transform mid-infrared spectra. J. Dairy Sci. 99, 8549–8560 (2016). https://doi.org/10.3168/jds.2016-11284

    Article  Google Scholar 

  35. Valencia-Flores, D., Hernández-Herrero, M., Guamis, B., Ferragut, V.: Comparing the effects of ultra-high-pressure homogenization and conventional thermal treatments on the microbiological, Phys, and Chem quality of almond beverages. J. Food Sci. 78, 199–205 (2013). https://doi.org/10.1111/17503841.12029

    Article  Google Scholar 

  36. Dreher, S., Kockmann, N., Woias, P.: Characterization of laminar transient flow regimes and mixing in t-shaped micromixers. Heat Transf. Eng. 30, 91–100 (2009)

    Article  Google Scholar 

  37. Ivanovs, S., Bulgakov, V., Kaletnik, H., Shymko, L., Kuvachov, V., Ihnatiev, Y.: Experimental checking of mathematical models describing the functioning adequacy of bridge systems in agricultural track system. INMATEH-Agric. Eng.‬ 62(3), 107–114 (2020). https://doi.org/10.35633/inmateh-62-11

  38. Bulgakov, V., Kuvachov, V., Olt, J.: Theoretical study on power performance of agricultural gantry systems. Ann. DAAAM Proc. Int. DAAAM Symp. 30, 167–175 (2019). https://doi.org/10.2507/30th.daaam.proceedings.022

    Article  Google Scholar 

  39. Morales, J., Watts, A., McConville, J.: Mechanical particle-size reduction techniques. AAPS Adv. Pharm. Sci. 22, 165–213 (2016). https://doi.org/10.1007/978-3-319-42609-9_4

    Article  Google Scholar 

  40. Liao, Y., Lucas, D.A.: Literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Eng. Sci. 64, 3389–3406 (2009). https://doi.org/10.1016/J.CES.2009.04.026

    Article  Google Scholar 

  41. Fonte, C., Fletcher, D., Guichardon, P., Aubin, J.: Simulation of micromixing in a T-mixer under laminar flow conditions. Chem. Eng. Sci. 222, 115706 (2020). https://doi.org/10.1016/j.ces.2020.115706

    Article  Google Scholar 

  42. Roudgar, M., Brunazzi, E., Galletti, C., Mauri, R.: Numerical study of split T-micromixers. Chem. Eng. Technol. 35, 1291–1299 (2012). https://doi.org/10.1002/CEAT.201100611

    Article  Google Scholar 

  43. Haponiuk, E., Zander, L., Probola, G.: Effect of the homogenization process on the rheological properties of food emulsions. Pol. J. Nat. Sci. 30, 149–158 (2015)

    Google Scholar 

  44. Rayner, M., Dejmek, P.: Engineering Aspects of Emulsification and Homogenization in the Food Industry. CRC Press, Taylor & Francis Group (2015). https://doi.org/10.1201/b18436

  45. Jiang, B., Shi, Y., Lin, G., Kong, D., Du, J.: Nanoemulsion prepared by disperser: the CFD model research. J. Food Eng. 241, 105–115 (2019). https://doi.org/10.1016/j.jfoodeng.2018.08.014

    Article  Google Scholar 

  46. Postelmans, A., Aernouts, B., Jordens, J., Van Gerven, T., Saeys, W.: Milk homogenization monitoring: fat globule size estimation from scattering spectra of milk. Innov. Food Sci. Emerg. Technol. 60, 102311 (2020). https://doi.org/10.1016/j.ifset.2020.102311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyrylo Samoichuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samoichuk, K., Yalpachyk, V., Kholobtseva, I., Dmytrevskyi, D., Chervonyi, V. (2024). Design Improvement of the Rotary-Pulsation Device by Resonance Phenomena. In: Ivanov, V., Pavlenko, I., Edl, M., Machado, J., Xu, J. (eds) Advances in Design, Simulation and Manufacturing VII. DSMIE 2024. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-63720-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63720-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63719-3

  • Online ISBN: 978-3-031-63720-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation