High-Visibility Interference for Time Bin Encoded Entanglement on Silicon Integrated Platform

  • Conference paper
  • First Online:
The 25th European Conference on Integrated Optics (ECIO 2024)

Abstract

Time bin entangled photon pairs are robust against transmission fluctuations and suitable for long-distance quantum entanglement distribution. Here we report the first monolithically integrated silicon time-bin encoding entanglement system, which integrates the photon sources, wavelength demultiplexers, and Franson interferometers on a single chip. We measured quantum interference visibility of 98.98% ± 0.55%, which is among the highest yet reported for monolithic integrated time-bin entanglement systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelucchi, E., et al.: The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021)

    Article  Google Scholar 

  2. Koduru, S., et al.: A trusted node–free eight-user metropolitan quantum communication network. Science Advances (2020)

    Google Scholar 

  3. Wengerowsky, S., et al.: An entanglement-based wavelength-multiplexed quantum communication network. Nature 564, 225–228 (2018)

    Article  ADS  Google Scholar 

  4. Kim, J.H., et al.: Quantum communication with time-bin entanglement over a wavelength-multiplexed fiber network. APL Photonics 7 (2022)

    Google Scholar 

  5. Wen, W., et al.: Realizing an entanglement-based multiuser quantum network with integrated photonics. Phys. Rev. Appl. 18, 024059 (2022)

    Article  ADS  Google Scholar 

  6. Franson, J.D.: Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989)

    Article  ADS  Google Scholar 

  7. Bell, J.S.: On the einstein podolsky rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  8. Chemnitz, M., et al.: Telecom-compatible, on-chip generation and processing of complex photon states in time and frequency. In: Proc. SPIE 12004, Integrated Optics: Devices, Materials, and Technologies XXVI, 1200409, 5 March 2022. https://doi.org/10.1117/12.2607224

  9. Zhang, X., et al.: Integrated silicon nitride time-bin entanglement circuits. Opt. Lett. 43, 3469–3472 (2018)

    Google Scholar 

  10. Ren, S.-Y., et al.: Photonic-chip-based dense entanglement distribution. PhotoniX 4, 12 (2023)

    Google Scholar 

  11. Zheng, Y., et al.: Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023)

    Article  ADS  Google Scholar 

  12. Takesue, H., Inoue, K.: Generation of 1.5 μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers. Phys. Rev. A 72 (2005)

    Google Scholar 

  13. **ong, C., et al.: Compact and reconfigurable silicon nitride time-bin entanglement circuit. Optica 2, 724–727 (2015)

    Article  ADS  Google Scholar 

  14. Hong, S. et al.: Ultralow-loss compact silicon photonic waveguide spirals and delay lines. Photonics Res. 10 (2021)

    Google Scholar 

  15. Fujiwara, M., Wakabayashi, R., Sasaki, M., Takeoka, M.: Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator. Opt Express 25, 3445–3453 (2017)

    Article  ADS  Google Scholar 

  16. Reimer, C., et al.: Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016)

    Article  ADS  Google Scholar 

  17. Jayakumar, H., et al.: Time-bin entangled photons from a quantum dot. Nat. Commun. 5, 4251 (2014)

    Article  ADS  Google Scholar 

  18. Akhlaghi, M.K., Schelew, E., Young, J.F.: Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation. Nat. Commun. 6, 8233 (2015)

    Article  ADS  Google Scholar 

  19. Liang, D., Bowers, J.E.: Recent progress in lasers on silicon. Nature Photon 4, 511–517 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by Hong Kong RGC Research Matching Grant RMG-01. YQ also thank RGC for funding support from the Hong Kong PhD Fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hon Ki Tsang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, Y., Xu, H., Hu, G., Tsang, H.K. (2024). High-Visibility Interference for Time Bin Encoded Entanglement on Silicon Integrated Platform. In: Witzens, J., Poon, J., Zimmermann, L., Freude, W. (eds) The 25th European Conference on Integrated Optics. ECIO 2024. Springer Proceedings in Physics, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-031-63378-2_36

Download citation

Publish with us

Policies and ethics

Navigation