Efficient Modelling of 3D-Printed Freeform Waveguides by a Dedicated Beam-Propagation Method (BPM) Based on Transformation Optics

  • Conference paper
  • First Online:
The 25th European Conference on Integrated Optics (ECIO 2024)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 402))

Included in the following conference series:

  • 609 Accesses

Abstract

An efficient numerical algorithm is developed to model wave propagation in 3D-printed freeform waveguides, so-called photonic wire bonds (PWBs). The method utilizes transformation-optics (TO) in combination with curvilinear meshing to transform the original 3D-freeform PWB into a straight waveguide with anisotropic material properties. This waveguide is then modeled using an anisotropic full-vectorial beam propagation method (BPM). We demonstrate the viability of our TO-BPM algorithm and benchmark its performance against a finite-difference-time-domain (FDTD) method. Our approach shows a 600-fold reduction of the computation time in combination with a mean percentage error of 3.2% in power transmission simulation relative to the FDTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, P., et al.: Silicon photonic devices and integrated circuits. Nanophotonics 3(4–5), 215–228 (2014)

    Article  Google Scholar 

  2. Shen, Y., et al.: Deep learning with coherent nanophotonic circuits. Nature Photon. 11(7), 441–446 (2017)

    Article  ADS  Google Scholar 

  3. Drayss, D., et al.: Non-sliced optical arbitrary waveform measurement (OAWM) using soliton microcombs. Optica 10, 888–896 (2023)

    Article  ADS  Google Scholar 

  4. Trocha, P., et al.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)

    Article  ADS  Google Scholar 

  5. Kohler, D., et al.: Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics. Light Sci. Appl. 10(1), 64 (2021)

    Article  ADS  Google Scholar 

  6. Xu, Y., et al.: Hybrid external-cavity lasers (ECL) using photonic wire bonds as coupling elements. Sci. Rep. 11, 16426 (2021)

    Article  ADS  Google Scholar 

  7. Nesic, A., et al.: Ultra-broadband polarisation beam splitters and rotators based on 3D-printed waveguides. Light Adv. Manuf. 4, 23 (2023)

    Google Scholar 

  8. Xu, Y., et al.: 3D-printed facet-attached microlenses for advanced photonic system assembly. Light Adv. Manuf. 4, 3 (2023)

    Google Scholar 

  9. Nesic, A., et al.: Transformation-optics modeling of 3D-printed freeform waveguides. Opt. Express 30(21), 38856–38879 (2022)

    Article  ADS  Google Scholar 

  10. Xu, C.L., et al.: A full-vectorial beam propagation method for anisotropic waveguides. J. Lightw. Technol. 12(11), 1926–1931 (1994)

    Article  ADS  Google Scholar 

  11. Lu, Y.Y., Ho, P.L.: Beam propagation modeling of arbitrarily bent waveguides. IEEE Photon. Technol. Lett. 14(12), 1698–1700 (2002)

    Article  ADS  Google Scholar 

  12. Kawamura, S., et al.: Design of tapered polarization splitter based on EC-CHFs by full-vectorial FE-BPM using coordinate transformation. J. Opt. Soc. Am. B 37, 1075–1082 (2020)

    Article  ADS  Google Scholar 

  13. Pedrola, G.L.: Beam Propagation Method for Design of Optical Waveguide Devices. John Wiley & Sons, Chichester (2015)

    Book  Google Scholar 

  14. Viquerat, J.: Simulation of electromagnetic waves propagation in nano-optics with a high-order discontinuous Galerkin time-domain method, Ph.D. diss. Université Nice Sophia Antipolis (2015)

    Google Scholar 

  15. Ansys-Lumerical. https://www.lumerical.com. Accessed 14 June 2023

  16. Billah, M.R., et al.: Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft via the DFG Collaborative Research Center (CRC) WavePhenomena (SFB 1173) and via the Excellence Cluster ‘3D Matter Made to Order’, by the European Research Council via the ERC Consolidator Grant TeraSHAPE (# 773248), and by the Karlsruhe School of Optics & Photonics (KSOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Koos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Foroutan-Barenji, S., Krimmer, J., Freude, W., Koos, C. (2024). Efficient Modelling of 3D-Printed Freeform Waveguides by a Dedicated Beam-Propagation Method (BPM) Based on Transformation Optics. In: Witzens, J., Poon, J., Zimmermann, L., Freude, W. (eds) The 25th European Conference on Integrated Optics. ECIO 2024. Springer Proceedings in Physics, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-031-63378-2_18

Download citation

Publish with us

Policies and ethics

Navigation