On the Application of Saddle-Point Methods for Combined Equilibrium Transportation Models

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2024)

Abstract

Travel demand modeling is an essential tool in urban planning and transportation system management. Existing practically efficient algorithms for solving multistage travel demand problems are variations of the heuristic sequential procedure. We propose a novel approach that applies saddle-point methods to a combined convex optimization formulation of the problem. Unlike all previous methods, our algorithm does not require costly shortest-paths calculations, and can be seamlessly scaled on GPUs. We show that in some cases it drastically outperforms the sequential procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/niquepolice/mmo_tm/tree/sp-combined.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows (1988)

    Google Scholar 

  2. Ali Safwat, K.N., Magnanti, T.L.: A combined trip generation, trip distribution, modal split, and trip assignment model. Transp. Sci. 22(1), 14–30 (1988)

    Article  MathSciNet  Google Scholar 

  3. Bar-Gera, H.: Origin-based algorithm for the traffic assignment problem. Transp. Sci. 36(4), 398–417 (2002)

    Article  Google Scholar 

  4. Bar-Gera, H., Boyce, D.: Origin-based algorithms for combined travel forecasting models. Trans. Res. Part B: Methodol. 37(5), 405–422 (2003)

    Article  Google Scholar 

  5. Bar-Gera, H., Boyce, D.: Solving a non-convex combined travel forecasting model by the method of successive averages with constant step sizes. Trans. Res. Part B: Methodol. 40(5), 351–367 (2006)

    Article  Google Scholar 

  6. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of transportation. Tech. rep. (1956)

    Google Scholar 

  7. Boyce, D.: Is the sequential travel forecasting paradigm counterproductive? J. Urban Planning Developm. 128(4), 169–183 (2002)

    Article  Google Scholar 

  8. Boyce, D.: Network equilibrium models for urban transport. Handbook of regional science, pp. 247–275 (2021)

    Google Scholar 

  9. Boyce, D., Bar-Gera, H.: Multiclass combined models for urban travel forecasting. Netw. Spat. Econ. 4, 115–124 (2004)

    Article  Google Scholar 

  10. Boyce, D., Ralevic-Dekic, B., Bar-Gera, H.: Convergence of traffic assignments: how much is enough? J. Transp. Eng. 130(1), 49–55 (2004)

    Article  Google Scholar 

  11. Boyce, D.E.: Urban transportation network-equilibrium and design models: recent achievements and future prospects. Environ Plan A 16(11), 1445–1474 (1984)

    Article  Google Scholar 

  12. Boyce, D.E., Zhang, Y.F., Lupa, M.R.: Introducing “feedback" into four-step travel forecasting procedure versus equilibrium solution of combined model. Transp. Res. Rec. 1443, 65 (1994)

    Google Scholar 

  13. Boyles, S.D., Lownes, N.E., Unnikrishnan, A.: Transportation Network Analysis, vol. 1 (2023), edition 0.91

    Google Scholar 

  14. Bradbury, J., et al.: JAX: composable transformations of Python+NumPy programs (2018). http://github.com/google/jax

  15. Chen, A., Yang, C., Kongsomsaksakul, S., Lee, M.: Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Netw. Spat. Econ. 7, 241–256 (2007)

    Article  Google Scholar 

  16. Cheng, L., Du, M., Jiang, X., Rakha, H.: Modeling and estimating the capacity of urban transportation network with rapid transit. Transport 29(2), 165–174 (2014)

    Article  Google Scholar 

  17. de Dios Ortúzar, J., Willumsen, L.G.: Modelling transport. John wiley & sons (2011)

    Google Scholar 

  18. Du, M., Jiang, X., Cheng, L.: Alternative network robustness measure using system-wide transportation capacity for identifying critical links in road networks. Adv. Mech. Eng. 9(4), 1687814017696652 (2017)

    Google Scholar 

  19. Evans, S.P.: Derivation and analysis of some models for combining trip distribution and assignment. Transp. Res. 10(1), 37–57 (1976)

    Article  Google Scholar 

  20. Florian, M., Nguyen, S.: A combined trip distribution modal split and trip assignment model. Transp. Res. 12(4), 241–246 (1978)

    Article  Google Scholar 

  21. Florian, M., Nguyen, S., Ferland, J.: On the combined distribution-assignment of traffic. Transp. Sci. 9(1), 43–53 (1975)

    Article  MathSciNet  Google Scholar 

  22. Frank, M., Wolfe, P., et al.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3(1–2), 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  23. Friesz, T.L.: An equivalent optimization problem for combined multiclass distribution, assignment and modal split which obviates symmetry restrictions. Trans. Res. Part B: Methodol. 15(5), 361–369 (1981)

    Article  MathSciNet  Google Scholar 

  24. Garrett, M., Wachs, M.: Transportation planning on trial: The Clean Air Act and travel forecasting. Sage Publications (1996)

    Google Scholar 

  25. Gasnikova, E., et al.: Sufficient conditions for multi-stages traffic assignment model to be the convex optimization problem. ar**v preprint ar**v:2305.09069 (2023)

  26. Guminov, S., Dvurechensky, P., Tupitsa, N., Gasnikov, A.: On a combination of alternating minimization and nesterov’s momentum. In: International Conference on Machine Learning, pp. 3886–3898. PMLR (2021)

    Google Scholar 

  27. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

  28. Ho, H., Wong, S.: Housing allocation problem in a continuum transportation system. Transportmetrica 3(1), 21–39 (2007)

    Article  Google Scholar 

  29. Ho, H., Wong, S., Loo, B.P.: Combined distribution and assignment model for a continuum traffic equilibrium problem with multiple user classes. Trans. Res. Part B: Methodol. 40(8), 633–650 (2006)

    Article  Google Scholar 

  30. Horowitz, A.J.: Tests of an ad hoc algorithm of elastic-demand equilibrium traffic assignment. Trans. Res. Part B: Methodol. 23(4), 309–313 (1989)

    Article  Google Scholar 

  31. Huang, H.J., Lam, W.H.: Modified evans’ algorithms for solving the combined trip distribution and assignment problem. Trans. Res. Part B: Methodol. 26(4), 325–337 (1992)

    Article  MathSciNet  Google Scholar 

  32. Ignashin, I., Yaramoshik, D.: Modifications of the frank-wolfe algorithm in the problem of finding the equilibrium distribution of traffic flows. Math, Model, Numerical Simulat. 10(1), 10–25 (2024)

    Google Scholar 

  33. Karush, W.: Minima of functions of several variables with inequalities as side constraints. M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago (1939)

    Google Scholar 

  34. Kim, Y., Samaranayake, S., Wischik, D.: A combined convex model for travel demand forecasting with hierarchical extended logit model. ar**v preprint ar**v:2308.01817 (2023)

  35. Kubentayeva, M., et al.: Primal-dual gradient methods for searching network equilibria in combined models with nested choice structure and capacity constraints. CMS 21(1), 15 (2024)

    Article  MathSciNet  Google Scholar 

  36. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (1951)

    Google Scholar 

  37. Lam, W.H., Huang, H.J.: A combined trip distribution and assignment model for multiple user classes. Trans. Res. Part B: Methodol. 26(4), 275–287 (1992)

    Article  Google Scholar 

  38. Larsson, T., Patriksson, M.: Simplicial decomposition with disaggregated representation for the traffic assignment problem. Transp. Sci. 26(1), 4–17 (1992)

    Article  Google Scholar 

  39. LeBlanc, L.J., Farhangian, K.: Efficient algorithms for solving elastic demand traffic assignment problems and mode split-assignment problems. Transp. Sci. 15(4), 306–317 (1981)

    Article  MathSciNet  Google Scholar 

  40. Lee, D.H., Wu, L., Meng, Q.: Equity based land-use and transportation problem. J. Adv. Transp. 40(1), 75–93 (2006)

    Article  Google Scholar 

  41. Leventhal, T., Nemhauser, G., Trotter, L., Jr.: A column generation algorithm for optimal traffic assignment. Transp. Sci. 7(2), 168–176 (1973)

    Article  MathSciNet  Google Scholar 

  42. Lin, J.J., Feng, C.M.: A bi-level programming model for the land use-network design problem. Ann. Reg. Sci. 37, 93–105 (2003)

    Article  Google Scholar 

  43. Liu, Z., Yin, Y., Bai, F., Grimm, D.K.: End-to-end learning of user equilibrium with implicit neural networks. Trans. Res. Part C: Emerging Technol. 150, 104085 (2023)

    Article  Google Scholar 

  44. Lundgren, J.T., Patriksson, M.: An algorithm for the combined distribution and assignment model. In: Transportation Networks: Recent Methodological Advances. Selected Proceedings of the 4th EURO Transportation Meeting Association of European Operational Research Societies (1999)

    Google Scholar 

  45. McNally, M.G.: The activity-based approach (2000)

    Google Scholar 

  46. Mitradjieva, M., Lindberg, P.O.: The stiff is moving-conjugate direction frank-wolfe methods with applications to traffic assignment. Transp. Sci. 47(2), 280–293 (2013)

    Article  Google Scholar 

  47. Najmi, A.: Interaction of demand and supply in transport planning model systems: A comprehensive revisit. Ph.D. thesis, UNSW Sydney (2020)

    Google Scholar 

  48. Nesterov, Y.: Universal gradient methods for convex optimization problems. Math. Program. 152(1), 381–404 (2015). https://doi.org/10.1007/s10107-014-0790-0

  49. Nesterov, Y., De Palma, A.: Stationary dynamic solutions in congested transportation networks: summary and perspectives. Netw. Spat. Econ. 3, 371–395 (2003)

    Article  Google Scholar 

  50. Oppenheim, N.: Equilibrium trip distribution/assignment with variable destination costs. Trans. Res. Part B: Methodol. 27(3), 207–217 (1993)

    Article  Google Scholar 

  51. Oppenheim, N., et al.: Urban travel demand modeling: from individual choices to general equilibrium. John Wiley and Sons (1995)

    Google Scholar 

  52. Peixoto, T.P.: The graph-tool python library. figshare (2014). https://doi.org/10.6084/m9.figshare.1164194

  53. Reeder, P., Bhat, C., Lorenzini, K., Hall, K., et al.: Positive feedback: exploring current approaches in iterative travel demand model implementation (2012)

    Google Scholar 

  54. Salim, A., Condat, L., Kovalev, D., Richtárik, P.: An optimal algorithm for strongly convex minimization under affine constraints. In: International Conference on Artificial Intelligence and Statistics, pp. 4482–4498. PMLR (2022)

    Google Scholar 

  55. Sheffi, Y.: Urban transportation networks, vol. 6. Prentice-Hall, Englewood Cliffs, NJ (1985)

    Google Scholar 

  56. Tam, M., Lam, W.H.: Maximum car ownership under constraints of road capacity and parking space. Trans. Res. Part A: Policy Pract. 34(3), 145–170 (2000)

    Google Scholar 

  57. Transportation Networks for Research Core Team: Transportation networks for research (2024). https://github.com/bstabler/TransportationNetworks (Accessed 29 Feb 2024)

  58. US Bureau of Public Roads: Traffic Assignment Manual. Washington D.C, Department of Commerce, Urban Planning Division (1964)

    Google Scholar 

  59. Wilson, A.G.: The use of entropy maximising models, in the theory of trip distribution, mode split and route split. J. Trans. Econ. Policy, 108–126 (1969)

    Google Scholar 

  60. Wong, K.I., Wong, S., Wu, J., Yang, H., Lam, W.H.: A combined distribution, hierarchical mode choice, and assignment network model with multiple user and mode classes. Urban and regional transportation modeling, pp. 25–42 (2004)

    Google Scholar 

  61. Xu, M., Chen, A., Gao, Z.: An improved origin-based algorithm for solving the combined distribution and assignment problem. Eur. J. Oper. Res. 188(2), 354–369 (2008)

    Article  MathSciNet  Google Scholar 

  62. Yang, H., Bell, M.G., Meng, Q.: Modeling the capacity and level of service of urban transportation networks. Trans. Res. Part B: Methodol. 34(4), 255–275 (2000)

    Article  Google Scholar 

  63. Yim, K.K., Wong, S., Chen, A., Wong, C.K., Lam, W.H.: A reliability-based land use and transportation optimization model. Trans. Res. Part C: Emerging Technol. 19(2), 351–362 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The work of Yarmoshik D. is supported by the Ministry of Science and Higher Education of the Russian Federation (Goszadaniye) No. 075-03-2024-117, project No. FSMG-2024-0025. The work of Persiianov M. is supported by the annual income of the Endowment Fund of Moscow Institute of Physics and Technology (target capital no. 5 for the development of artificial intelligence and machine learning, https://fund.mipt.ru/capitals/ck5/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demyan Yarmoshik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yarmoshik, D., Persiianov, M. (2024). On the Application of Saddle-Point Methods for Combined Equilibrium Transportation Models. In: Eremeev, A., Khachay, M., Kochetov, Y., Mazalov, V., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2024. Lecture Notes in Computer Science, vol 14766. Springer, Cham. https://doi.org/10.1007/978-3-031-62792-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62792-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62791-0

  • Online ISBN: 978-3-031-62792-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation