Effect of Deformation Temperatures on the Microstructure and Mechanical Properties of a Non-isoatomic AlCoFeMnNi High-Entropy Alloy

  • Conference paper
  • First Online:
Advances in Automation, Mechanical and Design Engineering (SAMDE 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 161))

  • 29 Accesses

Abstract

The deformation behavior of non-isoatomic AlCoFeMnNi high entropy alloy after tensile deformation at room temperature and -196 ℃ is studied. Compared with room temperature, the strength of the alloy increases from 750 MPa to 1102 MPa at −196 ℃, the tensile strength increases from 1168 MPa to 1502 MPa, but the elongation decreases from 19.6% to 15.2%. The increase in the strength of is attributed to the low temperature inhibiting the dislocation movement, resulting in dislocation slip requiring high shear stress. As the temperature decreases, cross-slip decreases, which makes it difficult for the dislocation to transfer to another slip plane through cross-slip after pile-up, and can only form a planar piled-up group, resulting in local stress concentration and premature failure of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, X., Chen, R., Liu, T., et al.: High-entropy alloys: a review of mechanical properties and deformation mechanisms at cryogenic temperatures. J. Mater. Sci. 57(12), 6573–6606 (2022). https://doi.org/10.1007/s10853-022-07066-2

    Article  Google Scholar 

  2. Zhang, C., Zhu, C., Harrington, T., et al.: Multifunctional non-equiatomic high entropy alloys with superelastic, high dam**, and excellent cryogenic properties. Adv. Eng. Mater. 21(1), 1800941 (2019)

    Article  Google Scholar 

  3. He, M., Shen, Y., Jia, N., et al.: C and N do** in high-entropy alloys: A pathway to achieve desired strength-ductility synergy. Appl. Mater. Today 25, 101162 (2021)

    Article  Google Scholar 

  4. Yan, X., Zhang, Y.: Functional properties and promising applications of high entropy alloys. Scripta Mater. 187, 188–193 (2020)

    Article  Google Scholar 

  5. **n, W., Wei, G., Fu, Y.: High-entropy alloys: emerging materials for advanced functional applications. J. Mater. Chemi. A 9(2), 663–701 (2021)

    Article  Google Scholar 

  6. Motallebi, R., Savaedi, Z., Mirzadeh, H.: Superplasticity of high-entropy alloys: a review. Arch. Civ. Mech. Eng. 22(1), 1–14 (2021). https://doi.org/10.1007/s43452-021-00344-x

    Article  Google Scholar 

  7. Ebrahimian, M., Rizi, M.S., Hong, S.I., et al.: Effects of molybdenum on hot deformation behavior and microstructural evolution of Fe40Mn40Co10Cr10C0.5 high entropy alloys. Sci. Technol. Adv. Mater. 24(1), 2186119 (2023)

    Google Scholar 

  8. Tong, Y., Chen, D., Han, B., et al.: Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Mater. 165, 228–240 (2019)

    Article  Google Scholar 

  9. Haas, S., Mosbacher, M., Senkov, O.N., et al.: Entropy determination of single-phase high entropy alloys with different crystal structures over a wide temperature range. Entropy 20(9), 654 (2018)

    Article  Google Scholar 

  10. Yuan, J.L., Wang, Z., **, X., et al.: Ultra-high strength assisted by nano-precipitates in a heterostructural high-entropy alloy. J. Alloys Compounds 921, 166106 (2022)

    Article  Google Scholar 

  11. Ma, X., Chen, J., Wang, X., et al.: Microstructure and mechanical properties of cold drawing CoCrFeMnNi high entropy alloy. J. Alloy. Compd. 795, 45–53 (2019)

    Article  Google Scholar 

  12. Chen, Y., Chen, D., Weaver, J., et al.: Heavy ion irradiation effects on CrFeMnNi and AlCrFeMnNi high entropy alloys. J. Nuclear Mater. 574, 154163 (2023)

    Article  Google Scholar 

  13. Jia, Y., Ren, C., Shiwei, W., et al.: Multistage strain-hardening behavior of ultrastrong and ductile lightweight refractory complex-concentrated alloys. J. Mater. Sci. Technol. 149, 73–87 (2023)

    Article  Google Scholar 

  14. Khan, T.Z., Kirk, T., Vazquez, G., et al.: Towards stacking fault energy engineering in FCC high entropy alloys. Acta Materialia 224, 117472 (2022)

    Article  Google Scholar 

  15. Zhang, Z., Li, K., Cai, T., et al.: Effect of fault energy on deformation mechanism and mechanical properties of face-centered cubic metal. Acta Metallurgica Sinica 59(4), 467–477 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Wang, M., Shen, Y. (2024). Effect of Deformation Temperatures on the Microstructure and Mechanical Properties of a Non-isoatomic AlCoFeMnNi High-Entropy Alloy. In: Carbone, G., Laribi, M.A. (eds) Advances in Automation, Mechanical and Design Engineering. SAMDE 2023. Mechanisms and Machine Science, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-031-62664-7_48

Download citation

Publish with us

Policies and ethics

Navigation