Machine Learning-Assisted Identification of Vulnerable Historic Buildings in Urban Environments

  • Chapter
  • First Online:
Advances in Artificial Intelligence-Empowered Decision Support Systems

Abstract

The vulnerability assessment of architectural cultural heritage represents a challenging, however necessary, activity towards defining risk preparedness plans for historic urban environments and more resilient communities. Nevertheless, the singularities and specificities that historical constructions often present the need for customising/tailoring and adapting generalised and common vulnerability assessment approaches. The balance between detail and scale when surveying historical structures implies that the feasibility of achieving urban-scale data acquisitions depends primarily on adopting relatively simple models and descriptions. In this sense, several simplified (often parametric) approaches have been developed for assessing the seismic vulnerability of historical constructions based on a limited set of descriptors. Although the selection of the parameters that influence the seismic response of the structures have been drawn from empirical observations (e.g., in the aftermath of intense seismic events), such regressive analysis may be improved and facilitated by employing Machine Learning categorisation algorithms. This chapter investigates the usability of parameter-based screenings of historical cities for assembling an urban-scale database that is further used for assessing the analytical vulnerability of historical constructions based on existing intensity/damage models. Furthermore, the observations acquired in the aftermath of a strong seismic event (that of the 19th of September 2017 in Mexico) are herein used for calibrating the model using a Random Forest Classifier algorithm, achieving a more representative intensity/damage model and, therefore, representing an opportunity for obtaining typologically tailored seismic vulnerability models in the context of a feasible urban-scale survey and post-earthquake observations. These trained algorithms are valuable tools in supporting risk preparedness and management policies based on the results of rapid screenings for proactively identifying vulnerable assets and evaluating the impact of different mitigation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Alberto, M. Otsubo, H. Kyokawa, T. Kiyota, I. Towhata, Reconnaissance of the 2017 Puebla, Mexico earthquake. Soils Found. 58, 1073–1092 (2018). https://doi.org/10.1016/j.sandf.2018.06.007

    Article  Google Scholar 

  2. A. Borri, M. Corradi, G. Castori, A. De Maria, A method for the analysis and classification of historic masonry. Bull. Earthq. Eng. 13, 2647–2665 (2015). https://doi.org/10.1007/s10518-015-9731-4

    Article  Google Scholar 

  3. C. Alvarado Rosas, Conservación del patrimonio cultural en el Pueblo Mágico de Tepoztlán, Morelos (2001–2012). Territorios 16, 15–33 (2015). https://doi.org/10.12804/territ32.2015.01

  4. C. Dore, M. Murphy, Integration of historic building information modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites, in 2012 18th International Conference on Virtual Systems and Multimedia (IEEE, 2012), pp. 369–376

    Google Scholar 

  5. G.M. Calvi, R. Pinho, G. Magenes, J.J. Bommer, L.F. Restrepo-Vélez, H. Crowley, Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J. Earthq. Technol. 43, 75–104 (2006)

    Google Scholar 

  6. Centre Europèen de Géodynamique et de Séismologie, European Macroseismic Scale 1998. Cah du Cent Eur Géodynamique Séismologie 15, 99 (1998). https://doi.org/10.2312/EMS-98.full.en

  7. Consiglio dei Ministri della Reppublica Italiana. 9 Febbraio 2011—Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme tecniche per le costruzioni di cui al decreto del Ministero deelle Infrastrutture e dei trasporti del 14 gennaio 2008, (2014)

    Google Scholar 

  8. T.M. Ferreira, R. Maio, R. Vicente, Seismic vulnerability assessment of the old city centre of Horta, Azores: calibration and application of a seismic vulnerability index method. Bull. Earthq. Eng. 15, 2879–2899 (2017). https://doi.org/10.1007/s10518-016-0071-9

    Article  Google Scholar 

  9. D.D. Fuentes, P.A. Baquedano Julià, M. D’Amato, M. Laterza, Preliminary seismic damage assessment of Mexican Churches after September 2017 earthquakes. Int. J. Archit. Herit. 15, 505–525 (2021). https://doi.org/10.1080/15583058.2019.1628323

    Article  Google Scholar 

  10. Gruppo Nazionale per la Difesa dai Terremoti—GNDT, Scheda di esposizione e vulnerabilità e di rilevamento danni di primo e secondo livello (murata e cemento armato) (Gruppo Nazionale per la Difesa dai Terremoti, Rome, Italy, 1994)

    Google Scholar 

  11. I. Guyon, A. Elisseeff, An introduction to feature extraction, in Feature Extraction (Springer Berlin Heidelberg, Berlin, Heidelberg, 2006), pp. 1–25

    Google Scholar 

  12. INAH, Catálogo Nacional de Monumentos Históricos Inmuebles. In: Cent. Doc. la CNMH (2019). https://catalogonacionalmhi.inah.gob.mx/consultaPublica. Accessed 27 Oct 2020

  13. K. Jordahl, J. Van den Bossche, M. Fleischmann, J. Wasserman, J. McBride, J. Gerard, J. Tratner, M. Perry, A.G. Badaracco, C. Farmer, G.A. Hjelle, A.D. Snow, M. Cochran, S. Gillies, L. Culbertson, M. Bartos, N. Eubank, M. Albert, A. Bilogur, S. Rey, C. Ren, D. Arribas-Bel, L. Wasser, L.J. Wolf, M. Journois, J. Wilson, A. Greenhall, C. Holdgraf, L.F. Filipe, geopandas/geopandas: v0.8.1 (2020)

    Google Scholar 

  14. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Vanderplas, A. Joly, B. Holt, G. Varoquaux, API design for machine learning software: experiences from the scikit-learn project, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (2013), pp. 1–15. https://doi.org/10.48550/ar**v.1309.0238

  15. M. Dobias, V.M. Sab, P. Petrik, lutraconsulting/mergin: 2021.6.1 (Software) (2021)

    Google Scholar 

  16. M.H. Sykes, Manual on Systems of Inventorying Immovable Cultural Property, 1st edn. (Imprimerie de la Manutention, Mayenne, 1984)

    Google Scholar 

  17. R. Maio, T.M. Ferreira, R. Vicente, A critical discussion on the earthquake risk mitigation of urban cultural heritage assets. Int. J. Disast. Risk Reduct. 27, 239–247 (2018). https://doi.org/10.1016/j.ijdrr.2017.10.010

    Article  Google Scholar 

  18. QGIS Development Team, QGIS geographic information system (Software) (2021)

    Google Scholar 

  19. R. Ramirez Eudave, Seismic vulnerability calculator and database (Software) (2022)

    Google Scholar 

  20. R. Ramírez Eudave, T.M. Ferreira, Characterisation of the historic urban landscape through the Aristotelian four causes: towards comprehensive GIS databases. Remote Sens. 13, 1879 (2021). https://doi.org/10.3390/rs13101879

    Article  Google Scholar 

  21. R. Ramírez Eudave, T.M. Ferreira, On the potential of using the Mexican national catalogue of historical monuments for assessing the seismic vulnerability of existing buildings: a proof-of-concept study. Bull. Earthq. Eng. 19, 4945–4978 (2021). https://doi.org/10.1007/s10518-021-01154-5

    Article  Google Scholar 

  22. R. Ramírez Eudave, T.M. Ferreira, R. Vicente, B. Paulo, F. Peña, Parametric and machine learning-based analysis of the seismic vulnerability of adobe historical buildings damaged after the September 2017 Mexico Earthquakes. Int. J. Archit. Herit. 18(6), 940–963 (2024). https://doi.org/10.1080/15583058.2023.2200739

    Article  Google Scholar 

  23. S. Brzev, C. Scawthorn, A. Charleson, L. Allen, M. Greene, K. Jaiswal, V. Silva, GEM Building Taxonomy Version 2.0. Pavia (2013)

    Google Scholar 

  24. V. Silva, S. Brzev, C. Scawthorn, C. Yepes, J. Dabbeek, H. Crowley, A building classification system for multi-hazard risk assessment. Int. J. Disast. Risk Sci. 13, 161–177 (2022). https://doi.org/10.1007/s13753-022-00400-x

    Article  Google Scholar 

  25. T. Mizera, P. Petrik, M. Dobias, S. Sklencar, E.A. Taşkın, N. Belgacem, M. Varga, M. Kuhn, P. Wells, S. Natsis, lutraconsulting/input: Release 1.3.0 (Software) (2022)

    Google Scholar 

  26. United States Geological Survey USGS, M 7.1—1 km E of Ayutla, Mexico (Last revised: February/2020), in Earthquake Hazards Program (2017). https://earthquake.usgs.gov/earthquakes/eventpage/us2000ar20/map?historic-seismicity=true&shakemap-intensity=false. Accessed 22 Jan 2021

  27. S.R. Vadyala, S.N. Betgeri, J.C. Matthews, E. Matthews, A review of physics-based machine learning in civil engineering. Results Eng. 13, 100316 (2022). https://doi.org/10.1016/j.rineng.2021.100316

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020. This research was funded by the Portuguese Foundation for Science and Technology (FCT) through grant number PD/BD/150385/2019. The field campaigns in the State of Morelos were financed by the Instituto de Ingeniería—Universidad Nacional Autónoma de México (Institute of Engineering—National Autonomous University of Mexico) through the project R562.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Miguel Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eudave, R.R., Ferreira, T.M., Vicente, R. (2024). Machine Learning-Assisted Identification of Vulnerable Historic Buildings in Urban Environments. In: Tsihrintzis, G.A., Virvou, M., Doukas, H., Jain, L.C. (eds) Advances in Artificial Intelligence-Empowered Decision Support Systems. Learning and Analytics in Intelligent Systems, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-62316-5_9

Download citation

Publish with us

Policies and ethics

Navigation