Artificial Intelligence in Breast Cancer Diagnosis: A Review

  • Chapter
  • First Online:
Advances in Artificial Intelligence-Empowered Decision Support Systems

Abstract

The impact of human errors in imaging interpretation and the fact that decision support systems can improve the reliability and accuracy of radiology reporting have led to the more widespread use of these techniques. Develo** decision support systems that assist radiologists in accurate diagnoses and improving the medical decision-making process has always been a challenge for the data analysis industry. This paper presents an in-depth review of a large number of intelligent approaches related to the support of breast cancer diagnosis taken in recent years. Specifically, the present review includes 230 corresponding approaches presented in the last 30 years in scientific journals in the field of artificial intelligence, as well as in medical journals. The search for the scientific reports included and presented in this paper was carried out in the databases of well-known scientific publishing houses using related keywords and phrases. The review briefly presents the main findings of each paper and classifies them according to their medical topic of specific interest (diagnosis, breast lesion classification, detection, abnormality classification, estimation of cancer risk, etc.). A statistical analysis is also provided, regarding the popularity of the approaches both, from the medical and AI viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ac:

Classification Accuracy

ACFNN:

Associative Classifier Using Fuzzy Feed-Forward Backpropagation Neural Network

AIRS:

Artificial Immune Recognition System

AMMLP:

Artificial Metaplasticity Multilayer Perceptrons

ANN:

Artificial Neural Networks

BIRADS:

Breast Imaging-Reporting and Data System

BP-a:

Back Propagation (BP) Training Algorithm

BRB-NN:

Back-Propagation Networks

CART:

Classification and Regression Trees

CCL:

Connected Component Labeling

CHAID:

Chi-Square Automatic Interaction Detection

CNN:

Convolutional Neural Networks

DCNN:

Deep Convolutional Neural Network

DEA:

Data Envelopment Analysis

DE-a:

Differential Evolution

ELM:

Extreme Learning Machine

EP:

Evolutionary Programming

FCM:

Fuzzy-C-Means

FISH:

Fisher classifier

FLD:

Fisher’s Linear Discriminant

FLS:

Fuzzy Logic System

FS:

Fuzzy Systems

GB-a:

Gentleboost Classifier (GB) Algorithm

GDA:

Gadratic Discriminant Analysis

GRNN:

General Regression Neural Networks

IDT:

Inductive Decision Tree

IG:

Information Gain

k-CV:

K-Fold Cross Validation

Kernel PCA:

Kernel Principal Component Analysis

KNN:

K-Nearest Neighbors

LBN:

Linear Bayes Normal Classifier

LDA:

Linear Discriminant Analysis

LOO:

Leave-1-Out

LR:

Logistic Regression

LYNA:

LYmph Node Assistant

MDSS:

Medical Decision Support System

MLP:

Multilayer Perceptron

NAÏVE:

Naive Bayes Classifier

OBL-a:

Opposition-Based Learning Algorithm

PCA:

Principal Component-Analysis

PDE:

Pareto-Differential Evolution

PNN:

Probabilistic Neural Networks

PSO:

Particle Swarm Optimization

QD:

Quadratic Classifier

RBFN:

Radial Basis Function Network

RF:

Random Forest

ROI:

Regions of Interest

RVM:

Relevance Vector Machine

SFFS:

Sequential Forward Floating Selection

SFS:

Sequential Forward Selection

SMO:

Sequential Minimal Optimization

Sn:

Sensitivity

SOM:

Self-Organizing Map

Sp:

Specificity

SVM:

Support Vector Machines

UTS:

Use-Test-Set

WPSO:

Weighted-Particle Swarm Optimization

YOLO:

You Only Look Once

References

  1. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018—IARC. https://www.iarc.who.int/featured-news/latest-global-cancer-data-cancer-burden-rises-to-18-1-million-new-cases-and-9-6-million-cancer-deaths-in-2018/. Accessed 4 Aug 2021

  2. P.A.T. Baltzer, M. Dietzel, W.A. Kaiser, A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography. Eur. Radiol. 23(8), 2051–2060 (2013). https://doi.org/10.1007/s00330-013-2804-3

  3. M. Wu et al., Prediction of molecular subtypes of breast cancer using BI-RADS features based on a ‘white box’ machine learning approach in a multi-modal imaging setting. Eur. J. Radiol. 114, 175–184 (2019). https://doi.org/10.1016/j.ejrad.2019.03.015

    Article  Google Scholar 

  4. L. Saba et al., The present and future of deep learning in radiology. Eur. J. Radiol. 114, 14–24 (2019). https://doi.org/10.1016/j.ejrad.2019.02.038

    Article  Google Scholar 

  5. M.M. Rahman, Y. Ghasemi, E. Suley, Y. Zhou, S. Wang, J. Rogers, Machine learning based computer aided diagnosis of breast cancer utilizing anthropometric and clinical features. IRBM 42(4), 215–226 (2021). https://doi.org/10.1016/j.irbm.2020.05.005

    Article  Google Scholar 

  6. P. Miller, S. Astley, Classification of breast tissue by texture analysis. Image Vis. Comput. 10(5), 277–282 (1992). https://doi.org/10.1016/0262-8856(92)90042-2

    Article  Google Scholar 

  7. D. Furundzic, M. Djordjevic, A.J. Bekic, Neural networks approach to early breast cancer detection. J. Syst. Arch. 44(8), 617–633 (1998). https://doi.org/10.1016/S1383-7621(97)00067-2

  8. X.H. Wang et al., Automated assessment of the composition of breast tissue revealed on tissue-thickness-corrected mammography. Am. J. Roentgenol. 180(1), 257–262 (2003). https://doi.org/10.2214/ajr.180.1.1800257

  9. R.D. Ardekani, M. Torabi, E. Fatemizadeh, Breast cancer diagnosis and classification in MR-images using multi-stage classifier, in 2006 International Conference on Biomedical and Pharmaceutical Engineering (2006), pp. 84–87

    Google Scholar 

  10. A. Oliver, X. Lladó, J. Freixenet, J. Martí, False positive reduction in mammographic mass detection using local binary patterns, in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2007 (Berlin, Heidelberg, 2007), pp. 286–293.https://doi.org/10.1007/978-3-540-75757-3_35

  11. C. Varela, P.G. Tahoces, A.J. Méndez, M. Souto, J.J. Vidal, Computerized detection of breast masses in digitized mammograms. Comput. Biol. Med. 37(2), 214–226 (2007). https://doi.org/10.1016/j.compbiomed.2005.12.006

    Article  Google Scholar 

  12. A. Oliver et al., A novel breast tissue density classification methodology. IEEE Trans. Inf. Technol. Biomed. 12(1), 55–65 (2008). https://doi.org/10.1109/TITB.2007.903514

    Article  Google Scholar 

  13. M.A. Alolfe, A.M. Youssef, Y.M. Kadah, A.S. Mohamed, Development of a computer-aided classification system for cancer detection from digital mammograms, in 2008 National Radio Science Conference (2008), pp. 1–8. https://doi.org/10.1109/NRSC.2008.4542383

  14. A. Boujelben, A.C. Chaabani, H. Tmar, M. Abid, Feature extraction from contours shape for tumor analyzing in mammographic images, in 2009 Digital Image Computing: Techniques and Applications (2009), pp. 395–399. https://doi.org/10.1109/DICTA.2009.71

  15. T.S. Subashini, V. Ramalingam, S. Palanivel, Automated assessment of breast tissue density in digital mammograms. Comput. Vis. Image Underst. 114(1), 33–43 (2010). https://doi.org/10.1016/j.cviu.2009.09.009

    Article  Google Scholar 

  16. A. Tahmasbi, F. Saki, S.B. Shokouhi, Mass diagnosis in mammography images using novel FTRD features, in 2010 17th Iranian Conference of Biomedical Engineering (ICBME) (2010), pp. 1–5. https://doi.org/10.1109/ICBME.2010.5704939

  17. J. Lesniak et al., Computer aided detection of breast masses in mammography using support vector machine classification, in Medical Imaging 2011: Computer-Aided Diagnosis, vol. 7963 (2011), p. 79631K. https://doi.org/10.1117/12.878140

  18. A. Tahmasbi, F. Saki, S.B. Shokouhi, Classification of benign and malignant masses based on Zernike moments. Comput. Biol. Med. 41(8), 726–735 (2011). https://doi.org/10.1016/j.compbiomed.2011.06.009

    Article  Google Scholar 

  19. C.-H. Wei, Y. Li, P.J. Huang, Mammogram retrieval through machine learning within BI-RADS standards. J. Biomed. Inform. 44(4), 607–614 (2011). https://doi.org/10.1016/j.jbi.2011.01.012

  20. J. Dheeba, S. Tamil Selvi, A swarm optimized neural network system for classification of microcalcification in mammograms. J. Med. Syst. 36(5), 3051–3061 (2012). https://doi.org/10.1007/s10916-011-9781-3

  21. J. Dheeba, S. Tamil Selvi, An improved decision support system for detection of lesions in mammograms using differential evolution optimized wavelet neural network. J. Med. Syst. 36(5), 3223–3232 (2012). https://doi.org/10.1007/s10916-011-9813-z

  22. H. **g, Y. Yang, R.M. Nishikawa, Retrieval boosted computer-aided diagnosis of clustered microcalcifications for breast cancer. Med. Phys. 39(2), 676–685 (2012). https://doi.org/10.1118/1.3675600

  23. C. Yao, Y. Yang, H. Chen, T. **g, X. Hao, H. Bi, Adaptive kernel learning for detection of clustered microcalcifications in mammograms, in 2012 IEEE Southwest Symposium on Image Analysis and Interpretation (2012), pp. 5–8. https://doi.org/10.1109/SSIAI.2012.6202439

  24. A. Oliver et al., Automatic microcalcification and cluster detection for digital and digitised mammograms. Knowl.-Based Syst. 28, 68–75 (2012). https://doi.org/10.1016/j.knosys.2011.11.021

  25. Y. Kabbadj, F. Regragui, M.M. Himmi, Microcalcification detection using a fuzzy inference system and support vector machine, in 2012 International Conference on Multimedia Computing and Systems (2012), pp. 312–315. https://doi.org/10.1109/ICMCS.2012.6320216

  26. M. Rizzi, M. D’Aloia, C. Guaragnella, B. Castagnolo, Health care improvement: comparative analysis of two CAD systems in mammographic screening. IEEE Trans. Syst. Man Cybern. Part Syst. Hum. 42(6), 1385–1395 (2012). https://doi.org/10.1109/TSMCA.2012.2210208

  27. A.D. Masmoudi, N.G.B. Ayed, D.S. Masmoudi, R. Abid, LBPV descriptors-based automatic ACR/BIRADS classification approach. EURASIP J. Image Video Process. 2013(1), 19 (2013).https://doi.org/10.1186/1687-5281-2013-19

  28. W. Jai Singh, B. Nagarajan, Automatic diagnosis of mammographic abnormalities based on hybrid features with learning classifier. Comput. Methods Biomech. Biomed. Eng. 16(7), 758–767 (2013). https://doi.org/10.1080/10255842.2011.639015

  29. R.M. Rangayyan, S. Banik, J.E. Leo Desautels, Detection of architectural distortion in prior mammograms via analysis of oriented patterns, J. Vis. Exp. JoVE (78) (2013). https://doi.org/10.3791/50341

  30. D.R. Ericeira, A.C. Silva, A.C. de Paiva, M. Gattass, Detection of masses based on asymmetric regions of digital bilateral mammograms using spatial description with variogram and cross-variogram functions. Comput. Biol. Med.43(8), 987–999 (2013). https://doi.org/10.1016/j.compbiomed.2013.04.019

  31. A. García-Manso, C.J. García-Orellana, H. González‐Velasco, R. Gallardo-Caballero, M.M. Macías, Consistent performance measurement of a system to detect masses in mammograms based on blind feature extraction, Biomed. Eng. OnLine 12(1), 2 (2013). https://doi.org/10.1186/1475-925X-12-2

  32. M. Radovic, M. Djokovic, A. Peulic, N. Filipovic, Application of data mining algorithms for mammogram classification, in 13th IEEE International Conference on BioInformatics and BioEngineering (2013), pp. 1–4. https://doi.org/10.1109/BIBE.2013.6701551

  33. N. Vállez et al., Breast density classification to reduce false positives in CADe systems. Comput. Methods Programs Biomed. 113(2), 569–584 (2014). https://doi.org/10.1016/j.cmpb.2013.10.004

    Article  Google Scholar 

  34. Z. Wang, G. Yu, Y. Kang, Y. Zhao, Q. Qu, Breast tumor detection in digital mammography based on extreme learning machine. Neurocomputing 128, 175–184 (2014). https://doi.org/10.1016/j.neucom.2013.05.053

    Article  Google Scholar 

  35. B. Sanae, E.M. Samira, A.K. Mounir, F. Youssef, Statistical block-based DWT features for digital mammograms classification, in 2014 9th International Conference on Intelligent Systems: Theories and Applications (SITA-14) (2014), pp. 1–7. https://doi.org/10.1109/SITA.2014.6847307

  36. J. Abdul Jaleel, S. Salim, S. Archana, Textural features based computer aided diagnostic system for mammogram mass classification, in 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) (2014), pp. 806–811. https://doi.org/10.1109/ICCICCT.2014.6993069

  37. S. Ergin, O. Kilinc, A new feature extraction framework based on wavelets for breast cancer diagnosis. Comput. Biol. Med. 51, 171–182 (2014). https://doi.org/10.1016/j.compbiomed.2014.05.008

    Article  Google Scholar 

  38. H. Mohamed, M.S. Mabrouk, A. Sharawy, Computer aided detection system for micro calcifications in digital mammograms. Comput. Methods Programs Biomed. 116(3), 226–235 (2014). https://doi.org/10.1016/j.cmpb.2014.04.010

    Article  Google Scholar 

  39. D. Saraswathi, E. Srinivasan, A CAD system to analyse mammogram images using fully complex-valued relaxation neural network ensembled classifier. J. Med. Eng. Technol. 38(7), 359–366 (2014). https://doi.org/10.3109/03091902.2014.942041

    Article  Google Scholar 

  40. K. Vaidehi, T.S. Subashini, Automatic classification and retrieval of mammographic tissue density using texture features, in 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO) (2015), pp. 1–6. https://doi.org/10.1109/ISCO.2015.7282292

  41. S. Sharma, P. Khanna, Computer-aided diagnosis of malignant mammograms using Zernike moments and SVM. J. Digit. Imaging 28(1), 77–90 (2015). https://doi.org/10.1007/s10278-014-9719-7

    Article  Google Scholar 

  42. F.S.S. de Oliveira, A. Oseas de Carvalho Filho, A. Corrêa Silva, A. Cardoso de Paiva, M. Gattass, Classification of breast regions as mass and non-mass based on digital mammograms using taxonomic indexes and SVM. Comput. Biol. Med. 57, 42–53 (2015). https://doi.org/10.1016/j.compbiomed.2014.11.016

  43. L. **aoming, Z. Zhigang, A new automatic mass detection method for breast cancer with false positive reduction. Neurocomputing 152, 388–402 (2015). https://doi.org/10.1016/j.neucom.2014.10.040

    Article  Google Scholar 

  44. L.M. Mina, N.A. Mat Isa, Breast abnormality detection in mammograms using artificial neural network, in 2015 International Conference on Computer, Communications, and Control Technology (I4CT) (2015), pp. 258–263. https://doi.org/10.1109/I4CT.2015.7219577

  45. M. Tan, W. Qian, J. Pu, H. Liu, B. Zheng, A new approach to develop computer-aided detection schemes of digital mammograms. Phys. Med. Biol. 60(11), 4413–4427 (2015). https://doi.org/10.1088/0031-9155/60/11/4413

    Article  Google Scholar 

  46. J. de Nazaré Silva, A.O. de Carvalho Filho, A. Corrêa Silva, A. Cardoso de Paiva, M. Gattass, Automatic detection of masses in mammograms using quality threshold clustering, correlogram function, and SVM. J. Digit. Imaging 28(3), 323–337 (2015). https://doi.org/10.1007/s10278-014-9739-3

  47. P.B. Ribeiro, L.A. Passos, L.A. da Silva, K.A.P. da Costa, J.P. Papa, R.A.F. Romero, Unsupervised breast masses classification through optimum-path forest, in 2015 IEEE 28th International Symposium on Computer-Based Medical Systems (2015), pp. 238–243. https://doi.org/10.1109/CBMS.2015.53

  48. R. Sánchez de la Rosa, M. Lamard, G. Cazuguel, G. Coatrieux, M. Cozic, G. Quellec, Multiple-instance learning for breast cancer detection in mammograms, in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2015), pp. 7055–7058. https://doi.org/10.1109/EMBC.2015.7320017

  49. S. Dhahbi, W. Barhoumi, E. Zagrouba, Breast cancer diagnosis in digitized mammograms using curvelet moments. Comput. Biol. Med. 64, 79–90 (2015). https://doi.org/10.1016/j.compbiomed.2015.06.012

    Article  Google Scholar 

  50. M.E. Elmanna, Y.M. Kadah, Implementation of practical computer aided diagnosis system for classification of masses in digital mammograms, in 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE) (2015), pp. 336–341. https://doi.org/10.1109/ICCNEEE.2015.7381387

  51. A.F. Khalaf, I.A. Yassine, Novel features for microcalcification detection in digital mammogram images based on wavelet and statistical analysis, in 2015 IEEE International Conference on Image Processing (ICIP) (2015), pp. 1825–1829. https://doi.org/10.1109/ICIP.2015.7351116

  52. F. Pak, H.R. Kanan, A. Alikhassi, Breast cancer detection and classification in digital mammography based on non-subsampled contourlet transform (NSCT) and super resolution. Comput. Methods Programs Biomed. 122(2), 89–107 (2015). https://doi.org/10.1016/j.cmpb.2015.06.009

    Article  Google Scholar 

  53. S.K. Wajid, A. Hussain, Local energy-based shape histogram feature extraction technique for breast cancer diagnosis. Expert Syst. Appl. 42(20), 6990–6999 (2015). https://doi.org/10.1016/j.eswa.2015.04.057

    Article  Google Scholar 

  54. M. Abdel-Nasser, H.A. Rashwan, D. Puig, A. Moreno, Analysis of tissue abnormality and breast density in mammographic images using a uniform local directional pattern. Expert Syst. Appl. 42(24), 9499–9511 (2015). https://doi.org/10.1016/j.eswa.2015.07.072

    Article  Google Scholar 

  55. W. **e, Y. Li, Y. Ma, Breast mass classification in digital mammography based on extreme learning machine. Neurocomputing 173, 930–941 (2016). https://doi.org/10.1016/j.neucom.2015.08.048

    Article  Google Scholar 

  56. H. Mahersia, H. Boulehmi, K. Hamrouni, Development of intelligent systems based on Bayesian regularization network and neuro-fuzzy models for mass detection in mammograms: a comparative analysis. Comput. Methods Programs Biomed. 126, 46–62 (2016). https://doi.org/10.1016/j.cmpb.2015.10.017

    Article  Google Scholar 

  57. J.-J. Mordang, A. Gubern-Mérida, G. den Heeten, N. Karssemeijer, Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications. Med. Phys. 43(4), 1676–1687 (2016). https://doi.org/10.1118/1.4943376

    Article  Google Scholar 

  58. A.C. Phadke, P.P. Rege, Fusion of local and global features for classification of abnormality in mammograms. Sādhanā 41(4), 385–395 (2016). https://doi.org/10.1007/s12046-016-0482-y

    Article  MathSciNet  Google Scholar 

  59. F. Burling-Claridge, M. Iqbal, M. Zhang, Evolutionary algorithms for classification of mammographie densities using local binary patterns and statistical features, in 2016 IEEE Congress on Evolutionary Computation (CEC) (2016), pp. 3847–3854. https://doi.org/10.1109/CEC.2016.7744277

  60. J. Zhicheng, G. **nbo, W. Ying, L. Jie, A deep feature based framework for breast masses classification. Neurocomputing 197, 221–231 (2016). https://doi.org/10.1016/j.neucom.2016.02.060

    Article  Google Scholar 

  61. G. Quellec, M. Lamard, M. Cozic, G. Coatrieux, G. Cazuguel, Multiple-instance learning for anomaly detection in digital mammography. IEEE Trans. Med. Imaging 35(7), 1604–1614 (2016). https://doi.org/10.1109/TMI.2016.2521442

    Article  Google Scholar 

  62. J. Diz, G. Marreiros, A. Freitas, Applying data mining techniques to improve breast cancer diagnosis. J. Med. Syst. 40(9), 203 (2016). https://doi.org/10.1007/s10916-016-0561-y

    Article  Google Scholar 

  63. S. Suzuki et al., Mass detection using deep convolutional neural network for mammographic computer-aided diagnosis, in 2016 55th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) (2016), pp. 1382–1386. https://doi.org/10.1109/SICE.2016.7749265

  64. S. Khan, M. Hussain, H. Aboalsamh, G. Bebis, A comparison of different Gabor feature extraction approaches for mass classification in mammography. Multimed. Tools Appl. 76(1), 33–57 (2017). https://doi.org/10.1007/s11042-015-3017-3

    Article  Google Scholar 

  65. T. Kooi et al., Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017). https://doi.org/10.1016/j.media.2016.07.007

    Article  Google Scholar 

  66. T.P. Latchoumi, L. Parthiban, Abnormality detection using weighed particle swarm optimization and smooth support vector machine. Biomed. Res. 28(11), 4749–4751 (2017)

    Google Scholar 

  67. S. Aminikhanghahi, S. Shin, W. Wang, S.I. Jeon, S.H. Son, A new fuzzy Gaussian mixture model (FGMM) based algorithm for mammography tumor image classification. Multimed. Tools Appl. 76(7), 10191–10205 (2017). https://doi.org/10.1007/s11042-016-3605-x

    Article  Google Scholar 

  68. N. Dhungel, G. Carneiro, A.P. Bradley, A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. Image Anal. 37, 114–128 (2017). https://doi.org/10.1016/j.media.2017.01.009

    Article  Google Scholar 

  69. M.A. Al-masni et al., Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput. Methods Programs Biomed. 157, 85–94 (2018). https://doi.org/10.1016/j.cmpb.2018.01.017

    Article  Google Scholar 

  70. U. Rajendra Acharya, E.Y.K. Ng, J.-H. Tan, S. Vinitha Sree, Thermography based breast cancer detection using texture features and support vector machine. J. Med. Syst. 36(3), 1503–1510 (2012). https://doi.org/10.1007/s10916-010-9611-z

  71. É.O. Rodrigues, A. Conci, T.B. Borchartt, A.C. Paiva, A. Correa Silva, T. MacHenry, Comparing results of thermographic images based diagnosis for breast diseases, in IWSSIP 2014 Proceedings (2014), pp. 39–42. [Online]. https://ieeexplore.ieee.org/abstract/document/6837625

  72. A. Tashk, M.S. Helfroush, H. Danyali, M. Akbarzadeh-Jahromi, A CAD mitosis detection system from breast cancer histology images based on fused feature, in 2014 22nd Iranian Conference on Electrical Engineering (ICEE) (2014), pp. 1925–1927. https://doi.org/10.1109/IranianCEE.2014.6999856

  73. S.C. Bagui, S. Bagui, K. Pal, N.R. Pal, Breast cancer detection using rank nearest neighbor classification rules. Pattern Recognit. 36(1), 25–34 (2003). https://doi.org/10.1016/S0031-3203(02)00044-4

    Article  Google Scholar 

  74. T. Mu, A.K. Nandi, Breast cancer detection from FNA using SVM with different parameter tuning systems and SOM–RBF classifier. J. Frankl. Inst. 344(3), 285–311 (2007). https://doi.org/10.1016/j.jfranklin.2006.09.005

    Article  MathSciNet  Google Scholar 

  75. E.D. Übeyli, Implementing automated diagnostic systems for breast cancer detection. Expert Syst. Appl.33(4), 1054–1062, (2007).https://doi.org/10.1016/j.eswa.2006.08.005

  76. Md.R. Hassan, M.M. Hossain, R.K. Begg, K. Ramamohanarao, Y. Morsi, Breast-cancer identification using HMM-fuzzy approach. Comput. Biol. Med. 40(3), 240–251 (2010). https://doi.org/10.1016/j.compbiomed.2009.11.003

  77. O. Inan, M.S. Uzer, N. Yılmaz, A new hybrid feature selection method based on association rules and PCA for detection of breast cancer. Int. J. Innov. Comput. Inf. Control9(2), 727–729 (2013)

    Google Scholar 

  78. H. Rezaeilouyeh, A. Mollahosseini, M.H. Mahoor, Microscopic medical image classification framework via deep learning and shearlet transform. J. Med. Imaging 3(4), 044501 (2016). https://doi.org/10.1117/1.JMI.3.4.044501

    Article  Google Scholar 

  79. J. Alwidian, B.H. Hammo, N. Obeid, WCBA: weighted classification based on association rules algorithm for breast cancer disease. Appl. Soft Comput. 62, 536–549 (2018). https://doi.org/10.1016/j.asoc.2017.11.013

    Article  Google Scholar 

  80. Y. Liu et al., Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch. Pathol. Lab. Med. 143(7), 859–868 (2019). https://doi.org/10.5858/arpa.2018-0147-OA

    Article  Google Scholar 

  81. C. Yu, H. Chen, Y. Li, Y. Peng, J. Li, F. Yang, Breast cancer classification in pathological images based on hybrid features. Multimed. Tools Appl. 78(15), 21325–21345 (2019). https://doi.org/10.1007/s11042-019-7468-9

    Article  Google Scholar 

  82. M. Abdar et al., A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recognit. Lett. 132, 123–131 (2020). https://doi.org/10.1016/j.patrec.2018.11.004

    Article  Google Scholar 

  83. M.M. Islam, M.R. Haque, H. Iqbal, M.M. Hasan, M. Hasan, M.N. Kabir, Breast cancer prediction: a comparative study using machine learning techniques. SN Comput. Sci. 1(5), 290 (2020). https://doi.org/10.1007/s42979-020-00305-w

    Article  Google Scholar 

  84. F. Retter, C. Plant, B. Burgeth, G. Botella, T. Schlossbauer, A. Meyer-Bäse, Computer-aided diagnosis for diagnostically challenging breast lesions in DCE-MRI based on image registration and integration of morphologic and dynamic characteristics. EURASIP J. Adv. Signal Process. 2013(1), 157 (2013). https://doi.org/10.1186/1687-6180-2013-157

  85. S. Hoffmann, J.D. Shutler, M. Lobbes, B. Burgeth, A. Meyer-Bäse, Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique. EURASIP J. Adv. Signal Process. 2013(1), 172 (2013). https://doi.org/10.1186/1687-6180-2013-172

    Article  Google Scholar 

  86. Y.-H. Huang, Y.-C. Chang, C.-S. Huang, J.-H. Chen, R.-F. Chang, Computerized breast mass detection using multi-scale hessian-based analysis for dynamic contrast-enhanced MRI. J. Digit. Imaging 27(5), 649–660 (2014). https://doi.org/10.1007/s10278-014-9681-4

    Article  Google Scholar 

  87. A. Gubern-Mérida et al., Automated localization of breast cancer in DCE-MRI. Med. Image Anal. 20(1), 265–274 (2015). https://doi.org/10.1016/j.media.2014.12.001

    Article  Google Scholar 

  88. C. Gallego-Ortiz, A. Martel, Improving the accuracy of computer-aided diagnosis for breast MR imaging by differentiating between mass and nonmass lesions. Radiology 278(3), 679–688 (2016). https://doi.org/10.1148/radiol.2015150241

    Article  Google Scholar 

  89. R. Ha et al., Predicting breast cancer molecular subtype with MRI dataset utilizing convolutional neural network algorithm. J. Digit. Imaging 32(2), 276–282 (2019). https://doi.org/10.1007/s10278-019-00179-2

    Article  Google Scholar 

  90. Y. Ji et al., Independent validation of machine learning in diagnosing breast cancer on magnetic resonance imaging within a single institution. Cancer Imaging 19 (2019). https://doi.org/10.1186/s40644-019-0252-2

  91. D. Arefan, R. Chai, M. Sun, M.L. Zuley, S. Wu, Machine learning prediction of axillary lymph node metastasis in breast cancer: 2D versus 3D radiomic features. Med. Phys. 47(12), 6334–6342 (2020). https://doi.org/10.1002/mp.14538

    Article  Google Scholar 

  92. J. Ding, H.D. Cheng, J. Huang, J. Liu, Y. Zhang, Breast ultrasound image classification based on multiple-instance learning. J. Digit. Imaging25(5), 620–627 (2012). https://doi.org/10.1007/s10278-012-9499-x

  93. A. Hizukuri et al., Computerized determination scheme for histological classification of breast mass using objective features corresponding to clinicians’ subjective impressions on ultrasonographic images. J. Digit. Imaging 26(5), 958–970 (2013). https://doi.org/10.1007/s10278-013-9594-7

    Article  Google Scholar 

  94. Q. Huang, F. Yang, L. Liu, X. Li, Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis. Inf. Sci. 314, 293–310 (2015). https://doi.org/10.1016/j.ins.2014.08.021

    Article  Google Scholar 

  95. M.A. Mohammed, B. Al-Khateeb, A.N. Rashid, D.A. Ibrahim, M.K. Abd Ghani, S.A. Mostafa, Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images. Comput. Electr. Eng. 70, 871–882 (2018). https://doi.org/10.1016/j.compeleceng.2018.01.033

  96. Y. Wu, M.L. Giger, K. Doi, C.J. Vyborny, R.A. Schmidt, C.E. Metz, Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology 187(1), 81–87 (1993). https://doi.org/10.1148/radiology.187.1.8451441

    Article  Google Scholar 

  97. D.B. Fogel, E.C. Wasson, E.M. Boughton, V.W. Porto, A step toward computer-assisted mammography using evolutionary programming and neural networks. Cancer Lett. 119(1), 93–97 (1997). https://doi.org/10.1016/S0304-3835(97)00259-0

  98. W.E. Polakowski et al., Computer-aided breast cancer detection and diagnosis of masses using difference of Gaussians and derivative-based feature saliency. IEEE Trans. Med. Imaging 16(6), 811–819 (1997). https://doi.org/10.1109/42.650877

    Article  Google Scholar 

  99. D.B. Fogel, E.C. Wasson III, E.M. Boughton, V.W. Porto, Evolving artificial neural networks for screening features from mammograms. Artif. Intell. Med. 14(3), 317–326 (1998). https://doi.org/10.1016/S0933-3657(98)00040-2

  100. A. Rojas-Domínguez, A.K. Nandi, Development of tolerant features for characterization of masses in mammograms. Comput. Biol. Med. 39(8), 678–688 (2009). https://doi.org/10.1016/j.compbiomed.2009.05.002

    Article  Google Scholar 

  101. T. Deserno, M. Soiron, J. Oliveira, A. Araujo, Towards computer-aided diagnostics of screening mammography using content-based image retrieval, in 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images (2011), pp. 211–219. https://doi.org/10.1109/SIBGRAPI.2011.40

  102. Y. Zhang, N. Tomuro, J. Furst, D.S. Raicu, Building an ensemble system for diagnosing masses in mammograms. Int. J. Comput. Assist. Radiol. Surg.7(2), 323–329 (2012).https://doi.org/10.1007/s11548-011-0628-7

  103. R. Ramos-Pollán et al., Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J. Med. Syst. 36(4), 2259–2269 (2012). https://doi.org/10.1007/s10916-011-9693-2

    Article  Google Scholar 

  104. J.-B. Li, Mammographic image based breast tissue classification with kernel self-optimized fisher discriminant for breast cancer diagnosis. J. Med. Syst. 36(4), 2235–2244 (2012). https://doi.org/10.1007/s10916-011-9691-4

    Article  Google Scholar 

  105. W. Jian, X. Sun, S. Luo, Computer-aided diagnosis of breast microcalcifications based on dual-tree complex wavelet transform. Biomed. Eng. OnLine 11(1), 96 (2012). https://doi.org/10.1186/1475-925X-11-96

    Article  Google Scholar 

  106. N. Azizi, N. Zemmal, Y.T. Guiassa, N. Farah, Kernel based classifiers fusion with features diversity for breast masses classification, in 2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA) (2013), pp. 116–121. https://doi.org/10.1109/WoSSPA.2013.6602347

  107. K. Ganesan, R.U. Acharya, C.K. Chua, L.C. Min, B. Mathew, A.K. Thomas, Decision support system for breast cancer detection using mammograms. Proc. Inst. Mech. Eng. [H] 227(7), 721–732 (2013). https://doi.org/10.1177/0954411913480669

  108. P. Li, T. Bi, J. Huang, S. Li, Breast cancer early diagnosis based on hybrid strategy. Biomed. Mater. Eng. 24(6), 3397–3404 (2014). https://doi.org/10.3233/BME-141163

    Article  Google Scholar 

  109. N. Azizi, N. Zemmal, M. Sellami, N. Farah, A new hybrid method combining genetic algorithm and support vector machine classifier: application to CAD system for mammogram images, in 2014 International Conference on Multimedia Computing and Systems (ICMCS) (2014), pp. 415–420. https://doi.org/10.1109/ICMCS.2014.6911285

  110. S.M.A. Beheshti, H. AhmadiNoubari, E. Fatemizadeh, M. Khalili, An efficient fractal method for detection and diagnosis of breast masses in mammograms. J. Digit. Imaging 27(5), 661–669 (2014). https://doi.org/10.1007/s10278-013-9654-z

    Article  Google Scholar 

  111. M. Tan, J. Pu, B. Zheng, Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model. Int. J. Comput. Assist. Radiol. Surg. 9(6), 1005–1020 (2014). https://doi.org/10.1007/s11548-014-0992-1

    Article  Google Scholar 

  112. S.K. Wajid, A. Hussain, B. Luo, An efficient computer aided decision support system for breast cancer diagnosis using echo state network classifier, in 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE) (2014), pp. 17–24. https://doi.org/10.1109/CICARE.2014.7007829

  113. M. Pratiwi, Alexander, J. Harefa, S. Nanda, Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network. Procedia Comput. Sci. 59, 83–91 (2015). https://doi.org/10.1016/j.procs.2015.07.340

  114. N. Zemmal, N. Azizi, M. Sellami, CAD system for classification of mammographic abnormalities using transductive semi supervised learning algorithm and beterogeneous features, in 2015 12th International Symposium on Programming and Systems (ISPS) (2015), pp. 1–9. https://doi.org/10.1109/ISPS.2015.7244993

  115. N.G. Ben Ayed, A.D. Masmoudi, D. Sellami, R. Abid, New developments in the diagnostic procedures to reduce prospective biopsies breast, in 2015 International Conference on Advances in Biomedical Engineering (ICABME) (2015), pp. 205–208. https://doi.org/10.1109/ICABME.2015.7323288

  116. M. Dong, X. Lu, Y. Ma, Y. Guo, Y. Ma, K. Wang, An efficient approach for automated mass segmentation and classification in mammograms. J. Digit. Imaging 28(5), 613–625 (2015). https://doi.org/10.1007/s10278-015-9778-4

    Article  Google Scholar 

  117. A. Addioui, F. Benabbou, S. El Filali, M. El Aroussi, A comparison of multi-resolution and multi-orientation for breast cancer diagnosis in the full-field digital mammogram, in 2015 27th International Conference on Microelectronics (ICM) (2015), pp. 257–260. https://doi.org/10.1109/ICM.2015.7438037

  118. S.P. Singh, S. Urooj, An improved CAD system for breast cancer diagnosis based on generalized pseudo-Zernike moment and Ada-DEWNN classifier. J. Med. Syst. 40(4), 105 (2016). https://doi.org/10.1007/s10916-016-0454-0

    Article  Google Scholar 

  119. R. Rouhi, M. Jafari, Classification of benign and malignant breast tumors based on hybrid level set segmentation. Expert Syst. Appl. 46, 45–59 (2016). https://doi.org/10.1016/j.eswa.2015.10.011

    Article  Google Scholar 

  120. J. Arevalo, F.A. González, R. Ramos-Pollán, J.L. Oliveira, M.A. Guevara Lopez, Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016). https://doi.org/10.1016/j.cmpb.2015.12.014

  121. U. Raghavendra, U. Rajendra Acharya, H. Fujita, A. Gudigar, J.H. Tan, S. Chokkadi, Application of Gabor wavelet and locality sensitive discriminant analysis for automated identification of breast cancer using digitized mammogram images. Appl. Soft Comput. 46, 151–161 (2016). https://doi.org/10.1016/j.asoc.2016.04.036

  122. C. Hiba, Z. Hamid, A. Omar, An improved breast tissue density classification framework using bag of features model, in 2016 4th IEEE International Colloquium on Information Science and Technology (CiSt) (2016), pp. 405–409. https://doi.org/10.1109/CIST.2016.7805081

  123. W. Sun, T.-L. Tseng, J. Zhang, W. Qian, Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph. 57, 4–9 (2017). https://doi.org/10.1016/j.compmedimag.2016.07.004

    Article  Google Scholar 

  124. N.F. Abubacker, A. Azman, S. Doraisamy, M.A.A. Murad, An integrated method of associative classification and neuro-fuzzy approach for effective mammographic classification. Neural Comput. Appl. 28(12), 3967–3980 (2017). https://doi.org/10.1007/s00521-016-2290-z

    Article  Google Scholar 

  125. M.A. Al-antari, M.A. Al-masni, M.-T. Choi, S.-M. Han, T.-S. Kim, A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int. J. Med. Inf. 117, 44–54 (2018). https://doi.org/10.1016/j.ijmedinf.2018.06.003

    Article  Google Scholar 

  126. L. Tsochatzidis, L. Costaridou, I. Pratikakis, Deep learning for breast cancer diagnosis from mammograms—a comparative study. J. Imaging 5(3), Art. no. 3 (2019). https://doi.org/10.3390/jimaging5030037

  127. S.A. Agnes, J. Anitha, S.I.A. Pandian, J.D. Peter, Classification of mammogram images using multiscale all convolutional neural network (MA-CNN). J. Med. Syst. 44(1), 30 (2019). https://doi.org/10.1007/s10916-019-1494-z

    Article  Google Scholar 

  128. J.D. Calderón-Contreras, M.I. Chacón-Murguía, A.J. Villalobos-Montiel, L. Ortega-Máynez, A fuzzy computer aided diagnosis system using breast thermography, in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI) (2015), pp. 105–108. https://doi.org/10.1109/ISBI.2015.7163827

  129. G. Schaefer, T. Nakashima, Strategies for addressing class imbalance in ensemble classification of thermography breast cancer features, in 2015 IEEE Congress on Evolutionary Computation (CEC) (2015), pp. 2362–2367. https://doi.org/10.1109/CEC.2015.7257177

  130. C.-M. Lo, Y.-C. Chang, Y.-W. Yang, C.-S. Huang, R.-F. Chang, Quantitative breast mass classification based on the integration of B-mode features and strain features in elastography. Comput. Biol. Med. 64, 91–100 (2015). https://doi.org/10.1016/j.compbiomed.2015.06.013

    Article  Google Scholar 

  131. C.-M. Lo, Y.-C. Lai, Y.-H. Chou, R.-F. Chang, Quantitative breast lesion classification based on multichannel distributions in shear-wave imaging. Comput. Methods Programs Biomed. 122(3), 354–361 (2015). https://doi.org/10.1016/j.cmpb.2015.09.004

    Article  Google Scholar 

  132. Q. Zhang et al., Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics 72, 150–157 (2016). https://doi.org/10.1016/j.ultras.2016.08.004

    Article  Google Scholar 

  133. W.H. Wolberg, O.L. Mangasarian, Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc. Natl. Acad. Sci. U.S.A. 87(23), 9193–9196 (1990)

    Article  Google Scholar 

  134. K.P. Bennett, O.L. Mangasarian, Neural network training via linear programming, in Advance in Optimization and Parallel Computing, 1st edn. (Elsevier Science Inc, USA, 1992), pp. 56–67. [Online]. https://www.semanticscholar.org/paper/Neural-network-training-via-linear-programming-Bennett-Mangasarian/e4ca27b330777e8236c35fdfef382e2f7373c64e

  135. R. Setiono, Extracting rules from pruned neural networks for breast cancer diagnosis. Artif. Intell. Med. 8(1), 37–51 (1996). https://doi.org/10.1016/0933-3657(95)00019-4

    Article  Google Scholar 

  136. O.L. Mangasarian, W. Nick Street, W.H. Wolberg, Breast cancer diagnosis and prognosis via linear programming. Oper. Res. 43(4), 570–577 (1995). https://doi.org/10.1287/opre.43.4.570

  137. J.A. Baker, P.J. Kornguth, J.Y. Lo, M.E. Williford, C.E. Floyd Jr, Breast cancer: prediction with artificial neural network based on BI-RADS standardized Lexicon. Radiology 196(3), 817–822 (1995). https://doi.org/10.1148/radiology.196.3.7644649

  138. D.B. Fogel, E.C. Wasson, E.M. Boughton, Evolving neural networks for detecting breast cancer. Cancer Lett. 96(1), 49–53 (1995). https://doi.org/10.1016/0304-3835(95)03916-K

    Article  Google Scholar 

  139. J.R. Quinlan, Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4, 77–90 (1996). https://doi.org/10.1613/jair.279

    Article  Google Scholar 

  140. B. Šter, D. Andrej, Neural Networks in Medical Diagnosis: Comparison with Other Method (1996), pp. 427–430. [Online]. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neural+Networks+in+Medical+Diagnosis%3A+Comparison+with+Other+Method&btnG=

  141. K.P. Bennett, J.A. Blue, A support vector machine approach to decision trees, in 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227), vol. 3 (1998), pp. 2396–2401. https://doi.org/10.1109/IJCNN.1998.687237

  142. D. Nauck, R. Kruse, Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16(2), 149–169 (1999). https://doi.org/10.1016/S0933-3657(98)00070-0

    Article  Google Scholar 

  143. C.A. Peña-Reyes, M. Sipper, A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17(2), 131–155 (1999). https://doi.org/10.1016/S0933-3657(99)00019-6

  144. P.C. Pendharkar, J.A. Rodger, G.J. Yaverbaum, N. Herman, M. Benner, Association, statistical, mathematical and neural approaches for mining breast cancer patterns. Expert Syst. Appl. 17(3), 223–232 (1999). https://doi.org/10.1016/S0957-4174(99)00036-6

    Article  Google Scholar 

  145. R. Setiono, Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18(3), 205–219 (2000). https://doi.org/10.1016/S0933-3657(99)00041-X

    Article  Google Scholar 

  146. M. Sarkar, T.Y. Leong, Application of K-nearest neighbors algorithm on breast cancer diagnosis problem, in Proc. AMIA Symp. (2000), pp. 759–763

    Google Scholar 

  147. H.A. Abbass, An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif. Intell. Med. 25(3), 265–281 (2002). https://doi.org/10.1016/S0933-3657(02)00028-3

    Article  Google Scholar 

  148. J. Abonyi, F. Szeifert, Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit. Lett. 24(14), 2195–2207 (2003). https://doi.org/10.1016/S0167-8655(03)00047-3

    Article  Google Scholar 

  149. S.-M. Chou, T.-S. Lee, Y.E. Shao, I.-F. Chen, Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 27(1), 133–142 (2004). https://doi.org/10.1016/j.eswa.2003.12.013

    Article  Google Scholar 

  150. T. Kiyan, T. Yildirim, Breast cancer diagnosis using statistical neural networks. Istanbul Univ. J. Electr. Electron. Eng. 4(2), 1149–1153 (2004)

    Google Scholar 

  151. D. West, P. Mangiameli, R. Rampal, V. West, Ensemble strategies for a medical diagnostic decision support system: a breast cancer diagnosis application. Eur. J. Oper. Res. 162(2), 532–551 (2005). https://doi.org/10.1016/j.ejor.2003.10.013

    Article  Google Scholar 

  152. K. Polat, S. Sahan, H. Kodaz, S. Günes, A new classification method for breast cancer diagnosis: feature selection artificial immune recognition system (FS-AIRS), in Advances in Natural Computation (Berlin, Heidelberg, 2005), pp. 830–838. https://doi.org/10.1007/11539117_117

  153. S. Şahan, K. Polat, H. Kodaz, S. Güneş, A new hybrid method based on fuzzy-artificial immune system and k-NN algorithm for breast cancer diagnosis. Comput. Biol. Med. 37(3), 415–423 (2007). https://doi.org/10.1016/j.compbiomed.2006.05.003

    Article  Google Scholar 

  154. K. Polat, S. Güneş, Breast cancer diagnosis using least square support vector machine. Digit. Signal Process. 17(4), 694–701 (2007). https://doi.org/10.1016/j.dsp.2006.10.008

    Article  Google Scholar 

  155. F.P. Pach, J. Abonyi, Association rule and decision tree based methods for fuzzy rule base generation. Int. J. Comput. Inf. Eng. 2(1), 165–170 (2006)

    Google Scholar 

  156. T.S. Subashini, V. Ramalingam, S. Palanivel, Breast mass classification based on cytological patterns using RBFNN and SVM. Expert Syst. Appl. 36(3, Part 1), 5284–5290 (2009). https://doi.org/10.1016/j.eswa.2008.06.127

  157. M.F. Akay, Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. 36(2, Part 2), 3240–3247 (2009). https://doi.org/10.1016/j.eswa.2008.01.009

  158. M. Karabatak, M. Cevdet Ince, An expert system for detection of breast cancer based on association rules and neural network. Expert Syst. Appl. 36(2, Part 2), 3465–3469 (2009). https://doi.org/10.1016/j.eswa.2008.02.064

  159. Y. Peng, Z. Wu, J. Jiang, A novel feature selection approach for biomedical data classification. J. Biomed. Inform. 43(1), 15–23 (2010). https://doi.org/10.1016/j.jbi.2009.07.008

    Article  Google Scholar 

  160. R.R. Janghel, A. Shukla, R. Tiwari, R. Kala, Breast cancer diagnosis using artificial neural network models, in The 3rd International Conference on Information Sciences and Interaction Sciences (2010), pp. 89–94. https://doi.org/10.1109/ICICIS.2010.5534716

  161. M.-L. Huang, Y.-H. Hung, W.-Y. Chen, Neural network classifier with entropy based feature selection on breast cancer diagnosis. J. Med. Syst. 34(5), 865–873 (2010). https://doi.org/10.1007/s10916-009-9301-x

    Article  Google Scholar 

  162. C.-Y. Fan, P.-C. Chang, J.-J. Lin, J.C. Hsieh, A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl. Soft Comput. 11(1), 632–644 (2011). https://doi.org/10.1016/j.asoc.2009.12.023

  163. H. Hasan Örkcü, H. Bal, Comparing performances of back-propagation and genetic algorithms in the data classification. Expert Syst. Appl. 38(4), 3703–3709 (2011). https://doi.org/10.1016/j.eswa.2010.09.028

  164. H.-L. Chen, B. Yang, J. Liu, D.-Y. Liu, A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst. Appl. 38(7), 9014–9022 (2011). https://doi.org/10.1016/j.eswa.2011.01.120

    Article  Google Scholar 

  165. A. Marcano-Cedeño, J. Quintanilla-Domínguez, D. Andina, WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Syst. Appl. 38(8), 9573–9579 (2011). https://doi.org/10.1016/j.eswa.2011.01.167

    Article  Google Scholar 

  166. D. Lavanya, D.K. Usha Ran, Analysis of feature selection with classification: breast cancer datasets. Indian J. Comput. Sci. Eng. 2(5), 756–763 (2011)

    Google Scholar 

  167. M.R. Senapati, P.K. Dash, Local linear wavelet neural network based breast tumor classification using firefly algorithm. Neural Comput. Appl. 22(7), 1591–1598 (2012). https://doi.org/10.1007/s00521-012-0927-0

    Article  Google Scholar 

  168. H.-L. Chen, B. Yang, G. Wang, S.-J. Wang, J. Liu, D.-Y. Liu, Support vector machine based diagnostic system for breast cancer using swarm intelligence. J. Med. Syst. 36(4), 2505–2519 (2012). https://doi.org/10.1007/s10916-011-9723-0

    Article  Google Scholar 

  169. H. Koyuncu, R. Ceylan, Artificial neural network based on rotation forest for biomedical pattern classification, in 2013 36th International Conference on Telecommunications and Signal Processing (TSP) (2013), pp. 581–585. https://doi.org/10.1109/TSP.2013.6614001

  170. C. Loukas, S. Kostopoulos, A. Tanoglidi, D. Glotsos, C. Sfikas, D. Cavouras, Breast cancer characterization based on image classification of tissue sections visualized under low magnification. Comput. Math. Methods Med. 2013, e829461 (2013). https://doi.org/10.1155/2013/829461

    Article  MathSciNet  Google Scholar 

  171. H. Malmir, F. Farokhi, R. Sabbaghi-Nadooshan, Optimization of data mining with revolutionary algorithms for cloud computing application, in ICCKE 2013 (2013), pp. 343–347. https://doi.org/10.1109/ICCKE.2013.6682821

  172. A.T. Azar, S.A. El-Said, Probabilistic neural network for breast cancer classification. Neural Comput. Appl.23(6), 1737–1751 (2013).https://doi.org/10.1007/s00521-012-1134-8

  173. A.T. Azar, S.M. El-Metwally, Decision tree classifiers for automated medical diagnosis. Neural Comput. Appl. 23(7), 2387–2403 (2013). https://doi.org/10.1007/s00521-012-1196-7

    Article  Google Scholar 

  174. S.A. Medjahed, T.A. Saadi, A. Benyettou, Breast cancer diagnosis by using k-nearest neighbor with different distances and classification rules. Int. J. Comput. Appl.62(1), 1–5 (2013)

    Google Scholar 

  175. B. Zheng, S.W. Yoon, S.S. Lam, Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Syst. Appl. 41(4), 1476–1482 (2014). https://doi.org/10.1016/j.eswa.2013.08.044

  176. A.T. Azar, S.A. El-Said, Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput. Appl.24(5), 1163–1177.https://doi.org/10.1007/s00521-012-1324-4

  177. M. Seera, C.P. Lim, A hybrid intelligent system for medical data classification. Expert Syst. Appl.41(5), 2239–2249 (2014).https://doi.org/10.1016/j.eswa.2013.09.022

  178. B. Xue, M. Zhang, W.N. Browne, Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl. Soft Comput. 18, 261–276 (2014). https://doi.org/10.1016/j.asoc.2013.09.018

    Article  Google Scholar 

  179. R. Sumbaly, N. Vishnusri, S. Jeyalatha, Diagnosis of breast cancer using decision tree data mining technique. Int. J. Comput. Appl. 98(10), 16–24 (2014)

    Google Scholar 

  180. S. Özsen, R. Ceylan, Comparison of AIS and fuzzy C-means clustering methods on the classification of breast cancer and diabetes datasets. Turk. J. Electr. Eng. Comput. Sci. 24, 1241–1254 (2014). https://doi.org/10.3906/elk-1210-62

    Article  Google Scholar 

  181. M. Milagro Fernández-Carrobles, G. Bueno, O. Déniz, J. Salido, M. García-Rojo, L. González-López, A CAD system for the acquisition and classification of breast TMA in pathology. Stud. Health Technol. Inform. 210, 756–760 (2015). https://doi.org/10.3233/978-1-61499-512-8-756

  182. H. Thazin, T. Thein, K. Tun, An approach for breast cancer diagnosis classification using neural network. Adv. Comput. Int. J. 6(1), 1–11 (2015). https://doi.org/10.5121/acij.2015.6101

    Article  Google Scholar 

  183. K.B. Nahato, K.N. Harichandran, K. Arputharaj, Knowledge mining from clinical datasets using rough sets and backpropagation neural network. Comput. Math. Methods Med. 2015 (2015). https://doi.org/10.1155/2015/460189

  184. T. Nguyen, A. Khosravi, D. Creighton, S. Nahavandi, Medical data classification using interval type-2 fuzzy logic system and wavelets. Appl. Soft Comput. 30(C), 812–822 (2015). https://doi.org/10.1016/j.asoc.2015.02.016

  185. A. Bhardwaj, A. Tiwari, Breast cancer diagnosis using genetically optimized neural network model. Expert Syst. Appl. 42(10), 4611–4620 (2015). https://doi.org/10.1016/j.eswa.2015.01.065

    Article  Google Scholar 

  186. A.M. Abdel-Zaher, A.M. Eldeib, Breast cancer classification using deep belief networks. Expert Syst. Appl. 46, 139–144 (2016). https://doi.org/10.1016/j.eswa.2015.10.015

    Article  Google Scholar 

  187. R.D.H. Devi, Dr M. Devi, Outlier detection algorithm combined with decision tree classifier for early diagnosis of breast cancer. Int. J. Adv. Eng. Technol. 71(2), 93–98 (2016)

    Google Scholar 

  188. Ł Jeleń, A. Krzyżak, T. Fevens, M. Jeleń, Influence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsies. Comput. Biol. Med. 79, 80–91 (2016). https://doi.org/10.1016/j.compbiomed.2016.10.007

    Article  Google Scholar 

  189. A.H. Osman, An enhanced breast cancer diagnosis scheme based on two-step-SVM technique. Int. J. Adv. Comput. Sci. Appl. IJACSA 8(4), Art. no. 4 (2017). https://doi.org/10.14569/IJACSA.2017.080423

  190. A.-Al Nahid, M. Ali Mehrabi, Y. Kong, Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. BioMed Res. Int. 2018, 2362108 (2018). https://doi.org/10.1155/2018/2362108

  191. A.F.M. Agarap, On breast cancer detection: an application of machine learning algorithms on the Wisconsin diagnostic dataset, in Proceedings of the 2nd International Conference on Machine Learning and Soft Computing (Phu Quoc Island, Viet Nam, 2018), pp. 5–9. https://doi.org/10.1145/3184066.3184080

  192. D. Bardou, K. Zhang, S.M. Ahmad, Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6, 24680–24693 (2018). https://doi.org/10.1109/ACCESS.2018.2831280

    Article  Google Scholar 

  193. H. Wang, B. Zheng, S.W. Yoon, H.S. Ko, A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur. J. Oper. Res. 267(2), 687–699 (2018). https://doi.org/10.1016/j.ejor.2017.12.001

    Article  MathSciNet  Google Scholar 

  194. O.I. Obaid, M.A. Mohammed, M.K.A. Ghani, S.A. Mostafa, F.T. AL-Dhief, Evaluating the performance of machine learning techniques in the classification of Wisconsin breast cancer. Int. J. Eng. Technol. 7(4.36), Art. no. 4.36 (2018). https://doi.org/10.14419/ijet.v7i4.36.23737

  195. S. Khan, N. Islam, Z. Jan, I. Ud Din, J.J.P.C. Rodrigues, A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 125, 1–6 (2019). https://doi.org/10.1016/j.patrec.2019.03.022

  196. V. Kumar, B.K. Mishra, M. Mazzara, D.N.H. Thanh, A. Verma, Prediction of malignant and benign breast cancer: a data mining approach in healthcare applications, in Advances in Data Science and Management (Singapore, 2020), pp. 435–442. https://doi.org/10.1007/978-981-15-0978-0_43

  197. R. Yan et al., Breast cancer histopathological image classification using a hybrid deep neural network. Methods 173, 52–60 (2020). https://doi.org/10.1016/j.ymeth.2019.06.014

    Article  Google Scholar 

  198. V. Chaurasia, S. Pal, Applications of machine learning techniques to predict diagnostic breast cancer. SN Comput. Sci. 1(5), 270 (2020). https://doi.org/10.1007/s42979-020-00296-8

    Article  Google Scholar 

  199. M. Dietzel et al., Artificial neural networks for differential diagnosis of breast lesions in MR-mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database. Eur. J. Radiol. 81(7), 1508–1513 (2012). https://doi.org/10.1016/j.ejrad.2011.03.024

    Article  Google Scholar 

  200. A.E. Hassanien, T. Kim, Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks. J. Appl. Log. 10(4), 277–284 (2012). https://doi.org/10.1016/j.jal.2012.07.003

  201. J. Milenković, K. Hertl, A. Košir, J. Žibert, J.F. Tasič, Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions. Artif. Intell. Med. 58(2), 101–114 (2013). https://doi.org/10.1016/j.artmed.2013.03.002

  202. N. Bhooshan et al., Potential of computer-aided diagnosis of high spectral and spatial resolution (HiSS) MRI in the classification of breast lesions. J. Magn. Reson. Imaging 39(1), 59–67 (2014). https://doi.org/10.1002/jmri.24145

    Article  Google Scholar 

  203. W.A. Weiss, M. Medved, G.S. Karczmar, M.L. Giger, Residual analysis of the water resonance signal in breast lesions imaged with high spectral and spatial resolution (HiSS) MRI: a pilot study. Med. Phys. 41(1), 012303 (2014). https://doi.org/10.1118/1.4851615

    Article  Google Scholar 

  204. Computerized image analysis for identifying triple-negative breast cancers and differentiating them from other molecular subtypes of breast cancer on dynamic contrast-enhanced MR images: a feasibility study. Radiology. https://pubs.rsna.org/doi/full/10.1148/radiol.14121031. Accessed 5 Aug 2021

  205. F. Soares, F. Janela, M. Pereira, J. Seabra, M.M. Freire, Classification of breast masses on contrast-enhanced magnetic resonance images through log detrended fluctuation cumulant-based multifractal analysis. IEEE Syst. J. 8(3), 929–938 (2014). https://doi.org/10.1109/JSYST.2013.2284101

    Article  Google Scholar 

  206. Q. Yang, L. Li, J. Zhang, G. Shao, B. Zheng, A new quantitative image analysis method for improving breast cancer diagnosis using DCE-MRI examinations. Med. Phys. 42(1), 103–109 (2015). https://doi.org/10.1118/1.4903280

    Article  Google Scholar 

  207. S.A. Waugh et al., Magnetic resonance imaging texture analysis classification of primary breast cancer. Eur. Radiol. 26(2), 322–330 (2016). https://doi.org/10.1007/s00330-015-3845-6

    Article  Google Scholar 

  208. I. Vidić et al., Support vector machine for breast cancer classification using diffusion-weighted MRI histogram features: preliminary study. J. Magn. Reson. Imaging 47(5), 1205–1216 (2018). https://doi.org/10.1002/jmri.25873

    Article  Google Scholar 

  209. D. Truhn, S., Schrading, C. Haarburger, H. Schneider, D. Merhof, C. Kuhl, Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290(2), 290–297 (2018). https://doi.org/10.1148/radiol.2018181352

  210. N.C. D’Amico et al., A machine learning approach for differentiating malignant from benign enhancing foci on breast MRI. Eur. Radiol. Exp. 4(1), 5 (2020). https://doi.org/10.1186/s41747-019-0131-4

    Article  Google Scholar 

  211. S. Ellmann et al., Implementation of machine learning into clinical breast MRI: potential for objective and accurate decision-making in suspicious breast masses. PLoS One 15(1) (2020). https://doi.org/10.1371/journal.pone.0228446

  212. V.S. Parekh et al., Multiparametric deep learning tissue signatures for a radiological biomarker of breast cancer: preliminary results. Med. Phys. 47(1), 75–88 (2020). https://doi.org/10.1002/mp.13849

    Article  Google Scholar 

  213. P.-L. Yen et al., Vascular morphologic information of three-dimensional power doppler ultrasound is valuable in the classification of breast lesions. Clin. Imaging 36(4), 267–271 (2012). https://doi.org/10.1016/j.clinimag.2011.11.012

    Article  Google Scholar 

  214. S. Liu, H.D. Cheng, Y. Liu, J. Huang, Y. Zhang, X. Tang, An effective computer-aided diagnosis system using B-mode and color doppler flow imaging for breast cancer, in 2013 Visual Communications and Image Processing (VCIP) (2013), pp. 1–4. https://doi.org/10.1109/VCIP.2013.6706400

  215. K. Drukker, M. Giger, L.A. Meinel, A. Starkey, J. Janardanan, H. Abe, Quantitative ultrasound image analysis of axillary lymph node status in breast cancer patients. Int. J. Comput. Assist. Radiol. Surg. 8(6), 895–903 (2013). https://doi.org/10.1007/s11548-013-0829-3

    Article  Google Scholar 

  216. W.K. Moon, C.-M. Lo, J.M. Chang, C.-S. Huang, J.-H. Chen, R.-F. Chang, Quantitative ultrasound analysis for classification of BI-RADS category 3 breast masses, J. Digit. Imaging, 26(6), 1091–1098 (2013). https://doi.org/10.1007/s10278-013-9593-8

  217. X. Liu, J. Shi, S. Zhou, M. Lu, An iterated Laplacian based semi-supervised dimensionality reduction for classification of breast cancer on ultrasound images, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2014), pp. 4679–4682. https://doi.org/10.1109/EMBC.2014.6944668

  218. K.M. Prabusankarlal, P. Thirumoorthy, R. Manavalan, Assessment of combined textural and morphological features for diagnosis of breast masses in ultrasound. Hum.-Centric Comput. Inf. Sci. 5(1), 12 (2015). https://doi.org/10.1186/s13673-015-0029-y

  219. W.K. Moon et al., Computer-aided diagnosis for distinguishing between triple-negative breast cancer and fibroadenomas based on ultrasound texture features. Med. Phys. 42(6Part1), 3024–3035 (2015). https://doi.org/10.1118/1.4921123

  220. A. Chmielewski, P. Dufort, A.M. Scaranelo, A Computerized system to assess axillary lymph node malignancy from sonographic images. Ultrasound Med. Biol. 41(10), 2690–2699 (2015). https://doi.org/10.1016/j.ultrasmedbio.2015.05.022

    Article  Google Scholar 

  221. W.-J. Wu, S.-W. Lin, W.K. Moon, An artificial immune system-based support vector machine approach for classifying ultrasound breast tumor images. J. Digit. Imaging 28(5), 576–585 (2015). https://doi.org/10.1007/s10278-014-9757-1

    Article  Google Scholar 

  222. S.S. Venkatesh, B.J. Levenback, L.R. Sultan, G. Bouzghar, C.M. Sehgal, Going beyond a first reader: a machine learning methodology for optimizing cost and performance in breast ultrasound diagnosis. Ultrasound Med. Biol. 41(12), 3148–3162 (2015). https://doi.org/10.1016/j.ultrasmedbio.2015.07.020

    Article  Google Scholar 

  223. J. Shan, S.K. Alam, B. Garra, Y. Zhang, T. Ahmed, Computer-aided diagnosis for breast ultrasound using computerized BI-RADS features and machine learning methods. Ultrasound Med. Biol. 42(4), 980–988 (2016). https://doi.org/10.1016/j.ultrasmedbio.2015.11.016

    Article  Google Scholar 

  224. C.E. Floyd, J.Y. Lo, A.J. Yun, D.C. Sullivan, P.J. Kornguth, Prediction of breast cancer malignancy using an artificial neural network. Cancer 74(11), 2944–2948 (1994). https://doi.org/10.1002/1097-0142(19941201)74:11%3c2944::aid-cncr2820741109%3e3.0.co;2-f

    Article  Google Scholar 

  225. M. Tan, B. Zheng, P. Ramalingam, D. Gur, Prediction of near-term breast cancer risk based on bilateral mammographic feature asymmetry. Acad. Radiol. 20(12), 1542–1550 (2013). https://doi.org/10.1016/j.acra.2013.08.020

    Article  Google Scholar 

  226. W. Sun et al., Prediction of near-term risk of develo** breast cancer using computerized features from bilateral mammograms. Comput. Med. Imaging Graph. 38(5), 348–357 (2014). https://doi.org/10.1016/j.compmedimag.2014.03.001

    Article  Google Scholar 

  227. A.E. Dawson, R.E. Austin Jr., D.S. Weinberg, Nuclear grading of breast carcinoma by image analysis. Classification by multivariate and neural network analysis. Am. J. Clin. Pathol. 95(4 Suppl 1), S29–S37 (1991)

    Google Scholar 

  228. Y.U. Ryu, R. Chandrasekaran, V.S. Jacob, Breast cancer prediction using the isotonic separation technique. Eur. J. Oper. Res. 181(2), 842–854 (2007). https://doi.org/10.1016/j.ejor.2006.06.031

  229. V. Chaurasia, S. Pal, B. Tiwari, Prediction of benign and malignant breast cancer using data mining techniques. J. Algorithms Comput. Technol. 12(2), 119–126 (2018). https://doi.org/10.1177/1748301818756225

    Article  Google Scholar 

  230. J. Addeh, A. Ebrahimzadeh, Breast cancer recognition using a novel hybrid intelligent method. J. Med. Signals Sens. 2(2), 95–102 (2012)

    Article  Google Scholar 

  231. M.R. Senapati, A.K. Mohanty, S. Dash, P.K. Dash, Local linear wavelet neural network for breast cancer recognition. Neural Comput. Appl. 22(1), 125–131 (2013). https://doi.org/10.1007/s00521-011-0670-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Karampotsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karampotsis, E., Panourgias, E., Dounias, G. (2024). Artificial Intelligence in Breast Cancer Diagnosis: A Review. In: Tsihrintzis, G.A., Virvou, M., Doukas, H., Jain, L.C. (eds) Advances in Artificial Intelligence-Empowered Decision Support Systems. Learning and Analytics in Intelligent Systems, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-62316-5_2

Download citation

Publish with us

Policies and ethics

Navigation