Crop-Guided Neural Network Segmentation of High-Resolution Skin Lesion Images

  • Conference paper
  • First Online:
Digital Transformation in Education and Artificial Intelligence Application (MoStart 2024)

Abstract

Medical images are often exceedingly large in width and height, limiting the maximum batch size when training convolutional neural networks and requiring models with a large number of parameters. Typically, images are uniformly downsampled, leading to losing fine-detailed information. Instead of uniformly downsampling images, we introduce a two-stage end-to-end segmentation network utilizing image crops to reduce network input size. Initially, a uniformly downscaled image is first segmented with a rough segmentation module, and the rough segmentation is used as a saliency map to crop the original high-resolution image to a region of interest. This crop is then re-segmented with a fine segmentation module. Our method’s effectiveness is demonstrated in segmenting lesion boundaries in clinical images across two datasets. We establish that this technique maintains comparable segmentation quality to a baseline model while reducing the network input size. Furthermore, our approach enhances the robustness of segmentation outcomes with smaller input sizes, outperforming uniformly downscaled images and baseline models. This improvement is consistent in both in-sample and out-of-sample evaluations.

This work has been supported in part by the Croatian Science Foundation under Project UIP-2017-05-4968, as well as the Faculty of Electrical Engineering, Computer Science and Information Technology Osijek grant “IZIP 2023”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DermIS—dermis.net, Department of Clinical Social Medicine (Univ. of Heidelberg) and the Department of Dermatology (Univ. of Erlangen) (2012). https://www.dermis.net/

  2. Skin Cancer Detection \(|\) Vision and Image Processing Lab—uwaterloo.ca, University of Waterloo (2012). https://uwaterloo.ca/vision-image-processing-lab/research-demos/skin-cancer-detection

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Angles, B., **, Y., Kornblith, S., Tagliasacchi, A., Yi, K. M.: MIST: multiple instance spatial transformer networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  5. Benčević, M., Galic, I., Habijan, M., Babin, D.: Training on polar image transformations improves biomedical image segmentation. IEEE Access 9, 133365–133375 (2021). https://doi.org/10.1109/ACCESS.2021.3116265

    Article  Google Scholar 

  6. Benčević, M., Qiu, Y., Galić, I., Pizurica, A.: Segment-then-segment: context-preserving crop-based segmentation for large biomedical images. Sensors 23(2), 633 (2023). https://doi.org/10.3390/s23020633

    Article  Google Scholar 

  7. Bozorgpour, A., Sadegheih, Y., Kazerouni, A., Azad, R., Merhof, D.: DermoSegDiff: a boundary-aware segmentation diffusion model for skin lesion delineation. In: Rekik, I., Adeli, E., Park, S.H., Cintas, C., Zamzmi, G. (eds.) PRIME 2023. LNCS, vol. 14277, pp. 146–158. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-46005-0_13

    Chapter  Google Scholar 

  8. Esteves, C., Allen-Blanchette, C., Kostas Daniilidis, Zhou, X.: Polar transformer networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  9. Chen, B., Liu, Y., Zhang, Z., Lu, G., Kong, A.W.K.: TransAttUnet: multi-level attention-guided U-net with transformer for medical image segmentation. IEEE Trans. Emerg. Top. Comput. Intell. 8(1), 55–68 (2024). https://doi.org/10.1109/TETCI.2023.3309626

    Article  Google Scholar 

  10. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC) (2019)

    Google Scholar 

  11. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_24

    Chapter  Google Scholar 

  12. Glaister, J., Wong, A., Clausi, D.A.: Automatic segmentation of skin lesions from dermatological photographs using a joint probabilistic texture distinctiveness approach. IEEE Trans. Biomed. Eng. (2014)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322

  14. Iyer, K., et al.: AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography. Sci. Rep. 11(1), 18066 (2021). https://doi.org/10.1038/s41598-021-97355-8

    Article  Google Scholar 

  15. Jha, A., Yang, H., Deng, R., Kapp, M.E., Fogo, A.B., Huo, Y.: Instance segmentation for whole slide imaging: end-to-end or detect-then-segment. J. Med. Imaging 8(01) (2021). https://doi.org/10.1117/1.JMI.8.1.014001

  16. Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., Johansen, H.D.: DoubleU-net: a deep convolutional neural network for medical image segmentation. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 558–564 (2020)

    Google Scholar 

  17. Lee, M.C.H., Oktay, O., Schuh, A., Schaap, M., Glocker, B.: Image-and-spatial transformer networks for structure-guided image registration. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 337–345. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_38

    Chapter  Google Scholar 

  18. Pooch, E.H.P., Ballester, P., Barros, R.C.: Can we trust deep learning based diagnosis? The impact of domain shift in chest radiograph classification. In: Petersen, J., et al. (eds.) TIA 2020. LNCS, vol. 12502, pp. 74–83. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62469-9_7

    Chapter  Google Scholar 

  19. Sabottke, C.F., Spieler, B.M.: The effect of image resolution on deep learning in radiography. Radiol.: Artif. Intell. 2(1), e190015 (2020). https://doi.org/10.1148/ryai.2019190015

  20. Sinclair, M., et al.: Atlas-ISTN: joint segmentation, registration and atlas construction with image-and-spatial transformer networks. Med. Image Anal. 78, 102383 (2022https://doi.org/10.1016/j.media.2022.102383

  21. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. Ar**v abs/1905.11946 (2019)

    Google Scholar 

  22. Tang, F., Huang, Q., Wang, J., Hou, X., Su, J., Liu, J.: DuAT: dual-aggregation transformer network for medical image segmentation. ar**v preprint ar**v:2212.11677 (2022)

  23. Wang, J., Wei, L., Wang, L., Zhou, Q., Zhu, L., Qin, J.: Boundary-aware transformers for skin lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_20

    Chapter  Google Scholar 

  24. Zhou, Y., **e, L., Shen, W., Wang, Y., Fishman, E.K., Yuille, A.L.: A fixed-point model for pancreas segmentation in abdominal CT scans. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 693–701. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_79

    Chapter  Google Scholar 

  25. Zhu, Z., **a, Y., Shen, W., Fishman, E., Yuille, A.: A 3D coarse-to-fine framework for volumetric medical image segmentation. In: 2018 International Conference on 3D Vision (3DV), pp. 682–690. IEEE, Verona (2018). https://doi.org/10.1109/3DV.2018.00083

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Benčević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benčević, M., Habijan, M., Galić, I. (2024). Crop-Guided Neural Network Segmentation of High-Resolution Skin Lesion Images. In: Volarić, T., Crnokić, B., Vasić, D. (eds) Digital Transformation in Education and Artificial Intelligence Application. MoStart 2024. Communications in Computer and Information Science, vol 2124. Springer, Cham. https://doi.org/10.1007/978-3-031-62058-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-62058-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-62057-7

  • Online ISBN: 978-3-031-62058-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation