RHLab: Towards Implementing a Partial Reconfigurable SDR Remote Lab

  • Conference paper
  • First Online:
Smart Technologies for a Sustainable Future (STE 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1028))

Included in the following conference series:

  • 25 Accesses

Abstract

Software-Defined Radio (SDR) remote labs permit students to experiment with real wireless communication, designing Radio Frequency (RF) systems with minimal code adjustments. This feature allows them to create RF prototypes remotely in a fast way allowing them to complement their theory of communication classes. While SDR hardware suffices for most basic applications, some demand extensive Signal Processing stages that surpass the capabilities of standard SDR equipment. SDR devices are controlled by reprogrammable digital logic devices like FPGA which have some limitations in terms of capabilities/price factor. For this case Partial Reconfiguration (PR) emerges as a solution, leveraging to use the resources of these devices more efficiently. In the conventional approach, modifying FPGA designs required users to undertake the laborious process of resynthesizing, implementing, and programming the entire FPGA. Consequently, this procedure is time-consuming and impedes users’ progress. However, with partial reconfiguration, users only need to resynthesize and program the specific portions or slices of the FPGA that necessitate modification. However, it necessitates a specialized understanding of FPGA design, involving the creation of modifiable regions. This paper takes initial strides towards establishing a remote laboratory for students to explore wireless communication concepts, harnessing PR for SDR devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://rhlab.ece.uw.edu.

  2. 2.

    https://labsland.com.

  3. 3.

    https://www.xilinx.com/products/design-tools/partial-reconfiguration.html.

  4. 4.

    https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html##productTable.

  5. 5.

    https://www.xilinx.com/products/design-tools/partial-reconfiguration.html.

  6. 6.

    https://www.xilinx.com/products/design-tools/vivado.html.

  7. 7.

    https://support.xilinx.com/s/question/0D52E00006hprrpSAA/vivado-on-arm-linux?language=en_US.

  8. 8.

    https://www.realdigital.org/hardware/blackboard.

  9. 9.

    https://redpitaya.com/stemlab-125-14/.

  10. 10.

    https://redpitaya.com/sdrlab-122-16/.

  11. 11.

    https://redpitaya-knowledge-base.readthedocs.io/en/latest/learn_fpga/4_lessons/top.html#lessons.

  12. 12.

    https://digilent.com/shop/jtag-hs3-programming-cable/.

References

  1. Wang, L., Wang, J.: Design of laboratories for teaching mechatronics/electrical engineering in the context of manufacturing upgrades. Int. J. Electr. Eng. Educ. 59(3), 251–265 (2022). https://doi.org/10.1177/0020720919837856

    Article  Google Scholar 

  2. Grout, I.: Supporting access to STEM subjects in higher education for students with disabilities using remote laboratories. In: Proceedings of 2015 12th International Conference on Remote Engineering and Virtual Instrumentation (REV), pp. 7–13 (2015)

    Google Scholar 

  3. Love, T.: Addressing safety and liability in stem education: a review of important legal issues and case law 1. Technol. Stud. 39, 28–41 (2013)

    Article  Google Scholar 

  4. Wei, C.: Research on university laboratory management and maintenance framework based on computer aided technology. Microprocess. Microsyst. 103617 (2020). https://www.sciencedirect.com/science/article/pii/S014193312030764X

  5. Hussein, R., Maloney, R.C., Rodriguez-Gil, L., Beroz, J.A., Orduna, P.: RHL-BEADLE: bringing equitable access to digital logic design in engineering education. In: 2023 ASEE Annual Conference and Exposition (2023)

    Google Scholar 

  6. May, D., Morkos, B., Jackson, A., Hunsu, N.J., Ingalls, A., Beyette, F.: Rapid transition of traditionally hands-on labs to online instruction in engineering courses. Eur. J. Eng. Educ. 48(5), 842–860 (2023). https://doi.org/10.1080/03043797.2022.2046707

    Article  Google Scholar 

  7. Xu, Z., Chen, W., Qu, D., Hei, X., Li, W.: Develo** a massive open online lab course for learning principles of communications. In: TALE, pp. 586–590. IEEE (2020)

    Google Scholar 

  8. Schnieder, M., Williams, S., Ghosh, S.: Comparison of in-person and virtual labs/tutorials for engineering students using blended learning principles. Educ. Sci. 12(3), 153 (2022). http://dx.doi.org/10.3390/educsci12030153

  9. Schnieder, M., Ghosh, S., Williams, S.: Using gamification and flipped classroom for remote/virtual labs for engineering students, February 2022. https://repository.lboro.ac.uk/articles/conference_contribution/Using_gamification_and_flipped_classroom_for_remote_virtual_labs_for_engineering_students/19188251

  10. Hussein, R., Wilson, D.: Remote versus in-hand hardware laboratory in digital circuits courses. In: 2021 ASEE Virtual Annual Conference Content Access. ASEE Conferences, Virtual Conference, July 2021. https://peer.asee.org/37662

  11. Blossom, E.: GNU radio: tools for exploring the radio frequency spectrum. Linux J. 2004, 4 (2004)

    Google Scholar 

  12. Tato, A.: Software defined radio: a brief introduction. In: XoveTIC Congress 2018. XoveTIC 2018, MDPI, September 2018. http://dx.doi.org/10.3390/proceedings2181196

  13. Şorecău, M., Şorecău, E., Sârbu, A., Bechet, P.: Real-time statistical measurement of wideband signals based on software defined radio technology. Electronics 12(13), 2920 (2023). http://dx.doi.org/10.3390/electronics12132920

  14. Perotoni, M.B., Ferreira, L., Maniçoba, A.: Low-cost measurement of electromagnetic leakage in domestic appliances using software-defined radios. Revista Brasileira de Ensino de Física 44, e20220009 (2022). https://doi.org/10.1590/1806-9126-RBEF-2022-0009

    Article  Google Scholar 

  15. Collins, T., Getz, R., Wyglinski, A., Pu, D.: Software-Defined Radio for Engineers (2018)

    Google Scholar 

  16. Hussein, R., Guo, M., Amarante, P., RodriguezGil, L., Orduña, P.: Digital twinning and remote engineering for immersive embedded systems education. In: Frontiers in Education (FIE) Conference, USA. IEEE (2023)

    Google Scholar 

  17. Hussein, R., et al.: Remote Hub Lab - RHL: broadly accessible technologies for education and telehealth. In: Auer, M.E., Langmann, R., Tsiatsos, T. (eds.) REV 2023. LNNS, vol. 763, pp. 73–85. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42467-0_7

    Chapter  Google Scholar 

  18. Inonan, M., Paul, A., May, D., Hussein, R.: RHLab: digital inequalities and equitable access in remote laboratories. In: 2023 ASEE Annual Conference and Exposition (2023)

    Google Scholar 

  19. Inonan, M., Hussein, R.: Melody: a platform-agnostic model for building and evaluating remote labs of software-defined radio technology. IEEE Access 11, 127550–127566 (2023). https://doi.org/10.1109/ACCESS.2023.3331399

    Article  Google Scholar 

  20. Inonan, M., Chap, B., Orduña, P., Hussein, R., Arabshahi, P.: RHLab scalable software defined radio (SDR) remote laboratory. In: Auer, M.E., Langmann, R., Tsiatsos, T. (eds.) REV 2023. LNNS, vol. 763, pp. 237–248. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42467-0_22

    Chapter  Google Scholar 

  21. Inonan, M., Orduña, P., Hussein, R.: Adapting a remote SDR lab to analyze digital inequalities in radiofrequency education in Latin America. Revista Innovaciones Educativas (2023, in press)

    Google Scholar 

  22. Vipin, K., Fahmy, S.A.: ZyCAP: efficient partial reconfiguration management on the **linx Zynq. IEEE Embed. Syst. Lett. 6(3), 41–44 (2014)

    Article  Google Scholar 

  23. Bucknall, A.R., Fahmy, S.A.: Runtime abstraction for autonomous adaptive systems on reconfigurable hardware. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1616–1621 (2021)

    Google Scholar 

  24. Bucknall, A.R., Shreejith, S., Fahmy, S.A.: Network enabled partial reconfiguration for distributed FPGA edge acceleration. In: 2019 International Conference on Field-Programmable Technology (ICFPT), pp. 259–262 (2019)

    Google Scholar 

  25. Bucknall, A.R., Shreejith, S., Fahmy, S.A.: Build automation and runtime abstraction for partial reconfiguration on **linx Zynq UltraScale+. In: 2020 International Conference on Field-Programmable Technology (ICFPT), pp. 215–220 (2020)

    Google Scholar 

  26. Grassi, S., Convers, A., Dassatti, A.: FPGA partial reconfiguration in software defined radio devices. In: Proceedings of the GNU Radio Conference, vol. 5, no. 1 (2020). https://pubs.gnuradio.org/index.php/grcon/article/view/68

  27. Bucknall, A.R., Fahmy, S.A.: ZyPR: end-to-end build tool and runtime manager for partial reconfiguration of FPGA SoCs at the edge. ACM Trans. Reconfig. Technol. Syst. 16(3), June 2023. https://doi.org/10.1145/3585521

  28. Vipin, K., Fahmy, S.A.: FPGA dynamic and partial reconfiguration: a survey of architectures, methods, and applications. ACM Comput. Surv. 51(4), July 2018. https://doi.org/10.1145/3193827

  29. Pham, K., et al.: Moving compute towards data in heterogeneous multi-FPGA clusters using partial reconfiguration and I/O virtualisation. In: 2020 International Conference on Field-Programmable Technology (ICFPT), pp. 221–226 (2020)

    Google Scholar 

  30. Hosny, S., Elnader, E., Gamal, M., Hussien, A., Khalil, A.H., Mostafa, H.: A software defined radio transceiver based on dynamic partial reconfiguration. In: 2018 New Generation of CAS (NGCAS), pp. 158–161 (2018)

    Google Scholar 

  31. Somanaidu, U., Telagam, N., Kandasamy, N., Nanjundan, M.: USRP 2901 based FM transceiver with large file capabilities in virtual and remote laboratory. Int. J. Online Eng. 14, 193–200 (2018)

    Article  Google Scholar 

  32. Machidon, O., Machidon, A., Cotfas, P., Cotfas, D.: Leveraging web services and FPGA dynamic partial reconfiguration in a virtual hardware design lab. Int. J. Eng. Educ. 33, 865–876 (2017)

    Google Scholar 

  33. Hassan, A., Ahmed, R., Mostafa, H., Fahmy, H.A.H., Hussien, A.: Performance evaluation of dynamic partial reconfiguration techniques for software defined radio implementation on FPGA. In: 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 183–186 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation’s Division Of Undergraduate Education under Grant No. 2141798.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Inoñan, M., Orduña, P., Hussein, R. (2024). RHLab: Towards Implementing a Partial Reconfigurable SDR Remote Lab. In: Auer, M.E., Langmann, R., May, D., Roos, K. (eds) Smart Technologies for a Sustainable Future. STE 2024. Lecture Notes in Networks and Systems, vol 1028. Springer, Cham. https://doi.org/10.1007/978-3-031-61905-2_18

Download citation

Publish with us

Policies and ethics

Navigation