Explainable AI in Machine Learning Regression: Creating Transparency of a Regression Model

  • Conference paper
  • First Online:
HCI in Business, Government and Organizations (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14720))

Included in the following conference series:

  • 207 Accesses

Abstract

This paper explores how to develop machine learning regression models that are more explainable and transparent for the end-user. Explainable regression models can be created by rank-ordering the features of the regression model that contribute most to predictive accuracy. In addition, fitting graphs can be generated that show how the addition of each feature in a regression model incrementally improves predictive accuracy. These information graphics are especially useful in understanding the tradeoffs involved in selecting a model that considers both model complexity and model performance. These methods are illustrated with two examples: a multiple regression model using a straightforward application of machine learning regression; and a more complex polynomial regression model that captures higher-order terms and interactions among all variables in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Ames housing dataset, with only 1460 observations, was small enough to performed repeated k-fold CV. For larger datasets, the computational costs of performing repeated k-fold CV might outweigh the benefits of obtaining more accurate estimates of RMSE.

References

  1. James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning. Springer, New York (2013)

    Book  Google Scholar 

  2. Allison, P.D.: Multiple regression: A primer. Pine Forge Press, Thousand Oaks, CA (1999)

    Google Scholar 

  3. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to linear regression analysis. John Wiley & Sons, Hoboken, NJ (2021)

    Google Scholar 

  4. Kuhn, M., Johnson, K.: Applied predictive modeling. Springer, New York (2013)

    Book  Google Scholar 

  5. Confalonieri, R., Coba, L., Wagner, B., Besold, T.R.: A historical perspective of explainable artificial intelligence. Wiley Interdisciplinary Rev. Data Mining Knowl. Dis. 11(1), e1391 (2021)

    Google Scholar 

  6. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine learning. J. Artifi. Intell. Res. 70, 245–317 (2021)

    Article  MathSciNet  Google Scholar 

  7. Angelov, P.P., Soares, E.A., Jiang, R., Arnold, N.I., Atkinson, P.M.: Explainable artificial intelligence: an analytical review. Wiley Interdisciplinary Rev, Data Mining  Knowl. Dis. 11(5), e1424 (2021)

    Google Scholar 

  8. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (xai): toward medical xai. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2020)

    Article  Google Scholar 

  9. Buchanan, B.G., Shortliffe, E.H.: Rule-based expert systems: the MYCIN experiments of the Stanford heuristic programming project. Addison-Wesley, (1984)

    Google Scholar 

  10. Swartout, W.R.: XPLAIN: A system for creating and explaining expert consulting programs. Artif. Intell. 21(3), 285–325 (1983)

    Article  Google Scholar 

  11. Chandrasekaran, B., Tanner, M.C., Josephson, J.R.: Explaining control strategies in problem solving. IEEE Intell. Syst. 4(1), 9–15 (1989)

    Google Scholar 

  12. De Cock, D.: Ames, Iowa: Alternative to the Boston housing data as an end of semester regression project. J. Statist. Educ. 19(3) (2011)

    Google Scholar 

  13. https://www.kaggle.com/datasets/marcopale/housing

  14. Provost, F., Fawcett, T.: Data science for business: what you need to know about data mining and data-analytic thinking. Sebastopol, CA: O'Reilly Media (2013)

    Google Scholar 

  15. Nakatsu, R.T.: Information visualizations used to avoid the problem of overfitting in supervised machine learning. In: Nah, F.H., Tan, C.H. (eds.)  HCIBGO 2017. LNCS, vol. 10294, pp. 373–385. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-58484-3_29

  16. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc.: Ser. B (Methodol.) 36(2), 111–133 (1974)

    Article  MathSciNet  Google Scholar 

  17. Geisser, S.: The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70(350), 320–328 (1975)

    Article  Google Scholar 

  18. Molinaro, A.M., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005)

    Article  Google Scholar 

  19. Nakatsu, R.T.: An evaluation of four resampling methods used in machine learning classification. IEEE Intell. Syst. 36(3), 51–57 (2021)

    Article  Google Scholar 

  20. Nakatsu, R.T.: Validation of machine learning ridge regression models using Monte Carlo, bootstrap, and variations in cross-validation. J. Intell. Syst. 32(1), 1–18 (2023)

    Google Scholar 

  21. Varshney, K.R.: Trustworthy machine learning. Independently Published, Chappaqua, NY (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbie T. Nakatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nakatsu, R.T. (2024). Explainable AI in Machine Learning Regression: Creating Transparency of a Regression Model. In: Nah, F.FH., Siau, K.L. (eds) HCI in Business, Government and Organizations. HCII 2024. Lecture Notes in Computer Science, vol 14720. Springer, Cham. https://doi.org/10.1007/978-3-031-61315-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61315-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61314-2

  • Online ISBN: 978-3-031-61315-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation