Design Science Research as a Guide for Innovative Higher Education Teaching: Towards an Application-Oriented Extension of the Proficiency Model

  • Conference paper
  • First Online:
Design Science Research for a Resilient Future (DESRIST 2024)

Abstract

Constant technological innovation demands higher education teaching to be reactive in an ever-changing environment. Technology-enhanced learning environments provide a foundation for innovative higher education teaching, but the lack of guidance on how to design elements for these environments constitutes a significant barrier. In this context, Design Science Research (DSR) could provide valuable orientation for the iterative implementation of innovative teaching approaches. While the Proficiency Model for DSR summarizes competencies needed to conduct DSR projects, concrete guidance on how to apply DSR to innovative teaching is lacking. Therefore, we address this research gap by extending the Proficiency Model with concrete guidelines that support conducting DSR. These guidelines are derived from an instantiation of two conducted design cycles within a lecture for information system students, resulting in seventeen guidelines that guide lecturers in higher education on how to implement DSR for the iterative transformation of their courses towards meaningful technology-enhanced learning environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, M.-H., Chen, H.-C., Liu, K.-S.: A study of the effects of digital learning on learning motivation and learning outcome. Eurasia J. Math. Sci. Technol. Educ. 13, 3553–3564 (2017). https://doi.org/10.12973/eurasia.2017.00744a

    Article  Google Scholar 

  2. Schweighofer, P., Ebner, M.: Aspects to be considered when implementing technology-enhanced learning approaches: a literature review. Future Internet 7, 26–49 (2015)

    Article  Google Scholar 

  3. Dinc, E.: Prospective teachers’ perceptions of barriers to technology integration in education. Contemp. Educ. Technol. 10, 381–398 (2019)

    Article  Google Scholar 

  4. Naidu, S.: Building resilience in education systems post-COVID-19. Distance Educ. 42, 1–4 (2021). https://doi.org/10.1080/01587919.2021.1885092

    Article  Google Scholar 

  5. Alenezi, M.: Digital learning and digital institution in higher education. Educ. Sci. 13, 88 (2023). https://doi.org/10.3390/educsci13010088

    Article  Google Scholar 

  6. Kim, M.S.: Develo** a competency taxonomy for teacher design knowledge in technology-enhanced learning environments: a literature review. RPTEL 14, 18 (2019)

    Article  Google Scholar 

  7. Hustad, E., Olsen, D.H.: Educating reflective Enterprise Systems practitioners: a design research study of the iterative building of a teaching framework. Inf. Syst. J. 24, 445–473 (2014). https://doi.org/10.1111/isj.12032

    Article  Google Scholar 

  8. Laurillard, D.: Teaching as a Design Science: Building Pedagogical Patterns for Learning and Technology. Routledge, New York (2012)

    Google Scholar 

  9. McKenney, S., Kali, Y., Markauskaite, L., Voogt, J.: Teacher design knowledge for technology enhanced learning: an ecological framework for investigating assets and needs. Instr. Sci. 43, 181–202 (2015). https://doi.org/10.1007/s11251-014-9337-2

    Article  Google Scholar 

  10. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19, 87–92 (2007)

    Google Scholar 

  11. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007). https://doi.org/10.2753/MIS0742-1222240302

    Article  Google Scholar 

  12. Fahd, K., Miah, S.J., Ahmed, K., Venkatraman, S., Miao, Y.: Integrating design science research and design based research frameworks for develo** education support systems. Educ. Inf. Technol. 26, 4027–4048 (2021). https://doi.org/10.1007/s10639-021-10442-1

    Article  Google Scholar 

  13. Carstensen, A.-K., Bernhard, J.: Design science research – a powerful tool for improving methods in engineering education research. Eur. J. Eng. Educ. 44, 85–102 (2019). https://doi.org/10.1080/03043797.2018.1498459

    Article  Google Scholar 

  14. Goldkuhl, G., Ågerfalk, P., Sjöström, J.: A design science approach to information systems education. In: Maedche, A., vom Brocke, J., Hevner, A. (eds.) DESRIST 2017. LNCS, vol. 10243, pp. 383–397. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59144-5_23

    Chapter  Google Scholar 

  15. Hevner, A., vom Brocke, J.: A proficiency model for design science research education. J. Inf. Syst. Educ. 34, 264–278 (2023)

    Google Scholar 

  16. Möller, F., Guggenberger, T.M., Otto, B.: Towards a method for design principle development in information systems. In: Hofmann, S., Müller, O., Rossi, M. (eds.) DESRIST 2020. LNCS, vol. 12388, pp. 208–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64823-7_20

    Chapter  Google Scholar 

  17. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)

    Article  Google Scholar 

  18. vom Brocke, J., Winter, R., Hevner, A., Maedche, A.: Special issue editorial – accumulation and evolution of design knowledge in design science research: a journey through time and space. J. Assoc. Inf. Syst. 21, 520–544 (2020)

    Google Scholar 

  19. Baskerville, R., Baiyere, A., Gregor, S., Hevner, A., Rossi, M.: Design science research contributions: finding a balance between artifact and theory. J. Assoc. Inf. Syst. 19, 3 (2018)

    Google Scholar 

  20. Winter, R., vom Brocke, J.: Teaching design science research. In: Association for Information Systems (ed.) Proceedings of the 42nd International Conference on Information Systems (ICIS 2021), pp. 1–6 (2021)

    Google Scholar 

  21. Schlimbach, R., et al.: A teaching framework for the methodically versatile DSR education of master’s students. J. Inf. Syst. Educ. 34, 333–346 (2023)

    Google Scholar 

  22. vom Brocke, J., Fettke, P., Gau, M., Houy, C., Morana, S.: Tool-support for design science research: design principles and instantiation (2017)

    Google Scholar 

  23. Zahn, E.-M., Dickhaut, E., Vonhof, M., Söllner, M.: Computational thinking for design science researchers – a modular training approach. In: Gerber, A., Baskerville, R. (eds.) DESRIST 2023, vol. 13873, pp. 360–374. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32808-4_23

    Chapter  Google Scholar 

  24. Cahenzli, M.: DSR teaching support: a checklist for better DSR research design presentations. In: Drechsler, A., Gerber, A., Hevner, A. (eds.) DESRIST 2022, vol. 13229, pp. 445–457. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06516-3_33

    Chapter  Google Scholar 

  25. Drechsler, A., Gerber, A., Hevner, A. (eds.): The Transdisciplinary Reach of Design Science Research. 17th International Conference on Design Science Research in Information Systems and Technology, DESRIST 2022, St Petersburg, FL, USA, June 1–3, 2022, Proceedings. LNCS, vol. 13229. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06516-3

  26. Mueller, L.M., Platz, M.: Design of an augmented reality app for primary school students which visualizes length units to promote the conversion of units. In: Gerber, A., Baskerville, R. (eds.) DESRIST 2023, vol. 13873, pp. 314–328. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32808-4_20

    Chapter  Google Scholar 

  27. Aguirre Reid, S., Kammer, F., Schüller, D., Siepermann, M., Wölfer, J.: Know the knowledge of your students: a flexible analytics tool for student exercises. In: Gerber, A., Baskerville, R. (eds.) DESRIST 2023, vol. 13873, pp. 329–344. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32808-4_21

    Chapter  Google Scholar 

  28. Rajamany, V., van Biljon, J.A., van Staden, C.J.: User experience requirements of digital moderation systems in South Africa: using participatory design within design science research. In: Drechsler, A., Gerber, A., Hevner, A. (eds.) DESRIST 2022, vol. 13229, pp. 470–482. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06516-3_35

    Chapter  Google Scholar 

  29. Figueiredo, J., García-Peñalvo, F.J.: Design science research applied to difficulties of teaching and learning initial programming. Univ. Access. Inf. Soc. 1–11 (2022). https://doi.org/10.1007/s10209-022-00941-4

  30. Nurhas, I., Mattick, X., Geisler, S., Pawlowski, J.: System design principles for intergenerational knowledge sharing. In: Drechsler, A., Gerber, A., Hevner, A. (eds.) DESRIST 2022, vol. 13229, pp. 458–469. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06516-3_34

    Chapter  Google Scholar 

  31. Haj-Bolouri, A.: Design principles for E-learning that support integration work: a case of action design research. In: Tulu, B., Djamasbi, S., Leroy, G. (eds.) DESRIST 2019, vol. 11491, pp. 300–316. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19504-5_20

    Chapter  Google Scholar 

  32. Smuts, H., Winter, R., Gerber, A., van der Merwe, A.: “Designing” design science research – a taxonomy for supporting study design decisions. In: Drechsler, A., Gerber, A., Hevner, A. (eds.) DESRIST 2022, vol. 13229, pp. 483–495. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06516-3_36

    Chapter  Google Scholar 

  33. Weinberger, A.: Scripts for computer-supported collaborative learning. Effects of social and epistemic cooperation scripts on collaborative knowledge construction, München (2003)

    Google Scholar 

  34. Kreijns, K., Kirschner, P.A., Jochems, W.: Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: a review of the research. Comput. Hum. Behav. 19, 335–353 (2003). https://doi.org/10.1016/S0747-5632(02)00057-2

    Article  Google Scholar 

  35. Pao, S.-Y., Mota, S., Chung, K., Reben, A.: A need-driven design approach. In: Poltrock, S., Simone, C., Grudin, J., Mark, G., Riedl, J. (eds.) Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pp. 829–832. ACM, New York (2012). https://doi.org/10.1145/2145204.2145327

  36. Radkowitsch, A., Vogel, F., Fischer, F.: Good for learning, bad for motivation? A meta-analysis on the effects of computer-supported collaboration scripts. Int. J. Comput.-Support. Collab. Learn. 15, 5–47 (2020). https://doi.org/10.1007/s11412-020-09316-4

    Article  Google Scholar 

  37. Kollar, I., Fischer, F., Hesse, F.W.: Collaboration scripts – a conceptual analysis. Educ. Psychol. Rev. 18, 159–185 (2006). https://doi.org/10.1007/s10648-006-9007-2

    Article  Google Scholar 

  38. Jeong, H., Hmelo-Silver, C.E., Jo, K.: Ten years of computer-supported collaborative learning: a meta-analysis of CSCL in STEM education during 2005–2014. Educ. Res. Rev. 28, 100284 (2019). https://doi.org/10.1016/j.edurev.2019.100284

    Article  Google Scholar 

  39. Rojas, M., Nussbaum, M., Guerrero, O., Chiuminatto, P., Greiff, S., Del Rio, R., Alvares, D.: Integrating a collaboration script and group awareness to support group regulation and emotions towards collaborative problem solving. Int. J. Comput.-Support. Collab. Learn. 17, 135–168 (2022). https://doi.org/10.1007/s11412-022-09362-0

    Article  Google Scholar 

  40. Kay, R.H., Knaack, L.: Assessing learning, quality and engagement in learning objects: the learning object evaluation scale for students (LOES-S). Educ. Technol. Res. Dev. 57, 147–168 (2009). https://doi.org/10.1007/s11423-008-9094-5

    Article  Google Scholar 

  41. Design-Based Research Collective: Design-based research: an emerging paradigm for educational inquiry. Educ. Res. 32, 5–8 (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the ‘Stiftung Innovation in der Hochschullehre’ (FBM2020: ‘Facilitating Competence Development through Authentic, Digital, and Feedback-Based Teaching-Learning Scenarios’) under Grant FBM2020-EA-2620-01350. The collaboration software mentioned in this article is ‘CoLearn!’, a Stud.IP plugin and one result of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Maria Steinherr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steinherr, V.M., Brehmer, M., Stöckl, R., Reinelt, R. (2024). Design Science Research as a Guide for Innovative Higher Education Teaching: Towards an Application-Oriented Extension of the Proficiency Model. In: Mandviwalla, M., Söllner, M., Tuunanen, T. (eds) Design Science Research for a Resilient Future. DESRIST 2024. Lecture Notes in Computer Science, vol 14621. Springer, Cham. https://doi.org/10.1007/978-3-031-61175-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61175-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61174-2

  • Online ISBN: 978-3-031-61175-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation