Conversion of Agricultural Residues into High-Value Animal Feed

  • Chapter
  • First Online:
Transforming Agriculture Residues for Sustainable Development

Part of the book series: Waste as a Resource ((WR))

  • 10 Accesses

Abstract

Increased agricultural and industrial activity across the world has resulted in huge production of agro-industrial wastes. In developed and develo** countries, agro-industrial wastes are known to contribute a significant proportion of the total waste matter. An estimated 998 million tons of agricultural waste per year is being produced and is likely to have a significant increase in the coming years. These wastes are commonly disposed of by burning, dum**, random piling, or landfilling which may result in environmental pollution becoming hazardous to human health and therefore raising a huge concern. Conversion of agro-industrial waste into animal feed is one of the most effective means of valorization of agro-residues without affecting the environment. Agricultural waste is comprised of lignocellulosic materials, fruit and vegetable wastes, processing industry wastes, and residues from animal farms which are rich in many bioactive and nutraceutical compounds. With the continuous increase in commercial animal feed prices (corn and soybean meal) due to the global pandemic, livestock producers are facing a huge feed cost inflation accounting for an average of 60–70% of the total cost of animal production. Agro-industrial waste or residues are major valuable biomass and can contribute as a potential solution to the problems of increasing the cost of animal feeds. Upcycling the current agro-industrial by- and co-products using appropriate valorization techniques can play a critical role in develo** low-cost yet high-value animal feed reducing the food-feed competition and overall cost of animal production making it sustainable with a low-carbon footprint. Hence, this chapter focuses on various techniques involved in the conversion of agro-industrial waste into animal feed and their potential utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MT:

Million tons

SmF:

Submerged fermentation

SSF:

Solid-state fermentation

TBtu:

Trillion British thermal units

TVS:

Total volatile solid

References

  • Agamuthu, P. (2009). Challenges and opportunities in Agro-waste management: An Asian perspective. In Inaugural meeting of First Regional 3R Forum in Asia, 11–12 November, Tokyo, Japan.

    Google Scholar 

  • Ahmad, F., Tauqir, N., Faraz, A., Asghar, I., Wadood, F., Tahir, M. & Mujahid, M. (2021). Performance of Lactating Sahiwal Cows Fed Corn Stovers Ensiled with Molasses, Urea and Lime Solution. Iran. J. Appl. Anim. Sci., 11, 59–66.

    Google Scholar 

  • Ajila, C. M., Brar, S. K., Verma, M., Tyagi, R. D., Godbout, S., & Valéro, J. R. (2012). Bio-processing of agro-byproducts to animal feed. Critical Reviews in Biotechnology, 32(4), 382–400.

    Article  Google Scholar 

  • Assegehegn, G., Brito-de la Fuente, E., Franco, J. M., & Gallegos, C. (2019). The importance of understanding the freezing step and its impact on freeze-drying process performance. Journal of Pharmaceutical Sciences, 108, 1378–1395.

    Article  Google Scholar 

  • Aziz, M. M. A., Kassim, K. A., ElSergany, M., Anuar, S., Jorat, M. E., Yaa-cob, H., Ahsan, A., & Imteaz, M. A. (2020). Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production. Renewable and Sustainable Energy Reviews, 119, 109603.

    Article  Google Scholar 

  • Bampidis, V. A., & Robinson, P. H. (2006). Citrus by-products as ruminant feeds: A review. Animal Feed Science and Technology, 128, 175–217.

    Article  Google Scholar 

  • Behera, S. S., & Ray, R. C. (2016). Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. International Journal of Biological Macromolecules (Elsevier), 86, 656–669.

    Article  Google Scholar 

  • Behera, S. S., Kerketta, A., & Ray, R. C. (2023). Solid-state fermentation for the production of microbial cellulases. In G. Brahmachari (Ed.), Biotechnology of microbial enzymes (2nd ed., pp. 59–82). Academic Press.

    Google Scholar 

  • Bhatia, L., Jha, H., Sarkar, T., & Sarangi, P. K. (2023). Food waste utilization for reducing carbon footprints towards sustainable and cleaner environment: A review. International Journal of Environmental Research and Public Health, 20, 2318.

    Article  Google Scholar 

  • Bhatti, M. B., & Khan, S. (1996). Fodder production in Pakistan. FAO, PARC.

    Google Scholar 

  • Bölük, G., & Mert, M. (2014). Fossil and renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries. Energy, 74, 439–446.

    Article  Google Scholar 

  • Bracco, S., Calicioglu, O., Juan, M. G. S., & Flammini, A. (2018). Assessing the contribution of bioeconomy to the total economy: A review of national frameworks. Sustainability., 10, 1698.

    Article  Google Scholar 

  • Bridgeman, T., Jones, J., Shield, I., & Williams, P. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856.

    Article  Google Scholar 

  • Bulgakov, V., Sevostianov, I., Kaletnik, G., Babyn, I., Ivanovs, S., Holovach, I., & Ihnatiev, Y. (2020). Theoretical studies of the vibration process of the dryer for waste of food. Rural Sustainable Resources., 44, 32–45.

    Article  Google Scholar 

  • Chakraborty, I., Chattopadhyay, A., Maity, P., et al. (2024). Biovalorization of sweet potato bagasse into food additives, feeds and fuels. In R. C. Ray (Ed.), Roots, tubers and bulb crop wastes: Management by biorefinery approaches (pp. 133–147). Springer.

    Chapter  Google Scholar 

  • Cheeke, P. R. (1991). Cereal milling by-products. In Applied animal nutrition: Feeds and feeding (pp. 53–57). Macmillan.

    Google Scholar 

  • Choi, Y. S., Choi, J. H., Han, D. J., Kim, H.-Y., Lee, M. A., Kim, H.-W., Jeong, J. Y., & Kim, C. J. (2011). Effects of rice bran fiber on heat-induced gel prepared with pork salt-soluble meat proteins in model system. Meat Science, 88, 59–66.

    Article  Google Scholar 

  • Choi, W. M., Lam, C. L., Mo, W. Y., & Wong, M. H. (2016). The use of food wastes as feed ingredients for culturing grass carp (Ctenopharyngodon idellus) in Hong Kong. Environmental Science and Pollution Research, 23(8), 7178–7185.

    Article  Google Scholar 

  • Chovatiya, S. G., Bhatt, S. S., & Shah, A. R. (2011). Evaluation of corn steep liquor as a supplementary feed for Labeo rohita (Ham.) fingerlings. Aquaculture International, 19, 1–12.

    Article  Google Scholar 

  • Dey, T., Bhattacharjee, T., Nag, P., Ghati, A., & Kuila, A. (2021). Valorization of agro-waste into value added products for sustainable development. Bioresource Technology Reports, 16, 100834.

    Article  Google Scholar 

  • Dhiman, T. R., Bingham, H. R., & Radloff, H. D. (2003). Production response of lactating cows fed dried versus wet brewers’ grain in diets with similar dry matter content. Journal of Dairy Science, 86, 2914–2921.

    Article  Google Scholar 

  • Esteban, J., & Ladero, M. (2018). Food waste as a source of value-added chemicals and materials: A biorefinery perspective. International Journal of Food Science and Technology, 53, 1095–1108.

    Article  Google Scholar 

  • Fazio, F., Habib, S. S., Naz, S., Filiciotto, F., Cicero, N., Rehman, H. U., Saddozai, S., Rind, K. H., Rind, N. A., & Shar, A. H. (2022). Effect of fortified feed with olive leaves extracts on the hematological and biochemical parameters of Oreochromis niloticus (Nile tilapia). Natural Product Research, 36, 1575–1580.

    Article  Google Scholar 

  • Filková, I., & Mujumdar, A. S. (2020). Industrial spray drying systems. In Handbook of industrial drying (Vol. 2020, pp. 263–307). CRC Press.

    Chapter  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). (2017). Strategic work of FAO for sustainable food and agriculture. Available from: http://www.fao.org/3/a-i6488e.pdf

  • Giri, S. S., Jun, J. W., Sukumaran, V., & Park, S. C. (2016). Dietary administration of banana (Musa acuminata) peel flour affects the growth, antioxidant status, cytokine responses, and disease susceptibility of rohu, Labeo rohita. Journal of Immunology Research, 4086591.

    Google Scholar 

  • Girotto, F., Alibardi, L., & Cossu, R. (2015). Food waste generation and industrial uses: A review. Waste Management, 45, 32–41.

    Article  Google Scholar 

  • Halliday, L. (2010). Feeding Cull Potatoes to Beef Cattle. Department of Agriculture. Prince Edward Island, Canada. http://www.gov.pe.ca/photos/original/af_fact_cull.pdf

  • Hamid, N. K. A., Somdare, P. O., Md Harashid, K. A., Othman, N. A., Kari, Z. A., Wei, L. S., & Dawood, M. A. O. (2022). Effect of papaya (Carica papaya) leaf extract as dietary growth promoter supplement in red hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus) diet. Saudi Journal of Biological Sciences, 29, 3911–3917.

    Article  Google Scholar 

  • Hiloidhari, M., Bhuyan, N., Gogoi, N., Seth, D., Garg, A., Singh, A., et al. (2020). Agroindustry wastes: Biofuels and biomaterials feedstocks for sustainable rural development. In Refining biomass residues for sustainable energy and bioproducts (pp. 357–388). Elsevier.

    Chapter  Google Scholar 

  • Ipharraguerre, I. R., & Clark, J. H. (2003). Soyhulls as an alternative feed for lactating dairy cows: Review. Journal of Dairy Science, 86, 1052–1073.

    Article  Google Scholar 

  • Jayant, M., Sahu, N. P., Deo, A. D., Subodh, G., Garg, C. K., & Valappil, R. K. (2020). Nutritional evaluation of fermented sweet potato leaf meal as a replacer of deoiled rice bran in the diet of Labeo rohita fingerlings. Journal of Experimental Zoology, 23, 61–70.

    Google Scholar 

  • Ji-Lu, Z. (2007). Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. Journal of Analytical and Applied Pyrolysis, 80(1), 30–35.

    Article  Google Scholar 

  • Joshi, S., Waghmare, J., Sonawane, K., & Waghmare, S. (2015). Bio-ethanol and bio-butanol production from orange peel waste. Biofuels, 6(1–2), 55–61.

    Article  Google Scholar 

  • Karam, M. C., Petit, J., Zimmer, D., Djantou, E. B., & Scher, J. (2016). Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering, 188, 32–49.

    Article  Google Scholar 

  • Kari, Z. A., Kabir, M. A., Dawood, M. A. O., Razab, M. K. A. A., Ariff, N. S. N. A., Sarkar, T., Pati, S., Edinur, H. A., Mat, K., & Ismail, T. A. (2022). Effect of fish meal substitution with fermented soy pulp on growth performance, digestive enzyme, amino acid profile, and immune-related gene expression of African catfish (Clarias gariepinus). Aquaculture, 546, 737418.

    Article  Google Scholar 

  • Katileviciute, A., Plakys, G., Budreviciute, A., Onder, K., Damiati, S., & Kodzius, R. (2019). A sight to wheat bran: High value-added products. Biomolecules, 9, 887.

    Article  Google Scholar 

  • Khir, R., Venkitasamy, C., & Pan, Z. (2019). Infrared heating for improved drying efficiency, food safety, and quality of rice. In J. Jia, D. Liu, & H. Ma (Eds.), Advances in food processing technology (pp. 231–251). Springer.

    Chapter  Google Scholar 

  • Kim, M. & Day, D. (2011). Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. Journal of industrial microbiology & biotechnology, 38, 803-807. 10.1007/s10295-010-0812-8.

    Google Scholar 

  • Krishna, C. (2005). Solid-state fermentation systems-an overview. Critical Reviews in Biotechnology, 25, 1–30.

    Article  Google Scholar 

  • Kumar, S., Paritosh, K., Pareek, N., Chawade, A., & Vivekanand, V. (2018). De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: An overview. Renewable and Sustainable Energy Reviews, 90, 160–170.

    Article  Google Scholar 

  • Kyawt, Y. Y., San Win, K., San Mu, K., Aung, A., & Aung, M. (2020). Feeding pineapple waste silage as roughage source improved the nutrient intakes, energy status and growth performances of growing Myanmar local cattle. Journal of Advanced Veterinary and Animal Research, 7(3), 436.

    Article  Google Scholar 

  • Lakshmi, M. V., Goutami, N., & Kumari, A. H. (2017). Agricultural waste concept, generation, utilization and management. International Journal of Multidisciplinary Advanced Research Trends, 1(3), 1–4.

    Google Scholar 

  • Liñan-Vidriales, M. A., Peña-Rodríguez, A., Tovar-Ramírez, D., Elizondo-González, R., Barajas-Sandoval, D. R., Ponce-Gracía, E. I., Rodríguez-Jaramillo, C., Balcázar, J. L., & Quiroz-Guzmán, E. (2021). Effect of rice bran fermented with Bacillus and Lysinibacillus species on dynamic microbial activity of Pacific white shrimp (Penaeus vannamei). Aquaculture, 531, 735958.

    Article  Google Scholar 

  • Lira, R. C., Rabello, C. B., Ludke, M. C. M. M., Ferreira, P. V., Lana, G. R. Q., & Lana, S. R. V. (2010). Productive performance of broiler chickens fed tomato waste. Revista Brasileira de Zootecnia, 39, 1074–1081.

    Article  Google Scholar 

  • MacLaren, C., Storkey, J., Menegat, A., Metcalfe, H., & Dehnen-Schmutz, K. (2020). An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 40, 24.

    Article  Google Scholar 

  • Mahadevaswamy, M., & Venkataraman, L. V. (1990). Integrated utilization of fruit processing wastes for biogas and fish production. Biological Wastes, 32, 243–251.

    Article  Google Scholar 

  • Mani, T., Murugan, P., & Mahinpey, N. (2011). Pyrolysis of oat straw and the comparison of the product yield to wheat and flax straw pyrolysis. Energy and Fuels, 25(7), 2803–2807.

    Article  Google Scholar 

  • Manju, W. M. W., Bakshi, M. P., & Makkar, H. P. (2015). Waste to worth: Fruit wastes and by-products as animal feed. CABI Reviews, 1–26.

    Google Scholar 

  • Molina, A. E., & Yáñez-Ruiz, D. R. (2008). Potential use of olive by-products in ruminant feeding: A review. Animal Feed Science and Technology, 147, 247–264.

    Article  Google Scholar 

  • Morgan, T. J., George, A., Boulamanti, A. K., Álvarez, P., Adanouj, I., Dean, C., et al. (2015). Quantitative X-ray fluorescence analysis of biomass (switchgrass, corn stover, eucalyptus, beech, and pine wood) with a typical commercial multi-element method on a WD-XRF spectrometer. Energy and Fuels, 29(3), 1669–1685.

    Article  Google Scholar 

  • Murugesan, K., Srinivasan, K. R., Paramasivam, K., Selvam, A., & Wong, J. (2021). Conversion of food waste to animal feeds. In Current developments in biotechnology and bioengineering (pp. 305–324). Elsevier.

    Chapter  Google Scholar 

  • Nath, P. C., Saikia, D., Debnath, S., Tiwari, A., & Nayak, P. K. (2022). Recent advances in valorization of agro-waste: A step towards sustainable development. Indian Journal of Hill Farming, 35(2), 73–91.

    Google Scholar 

  • Nath, P. C., Ojha, A., Debnath, S., Sharma, M., Nayak, P. K., Sridhar, K., & Inbaraj, B. S. (2023). Valorization of food waste as animal feed: A step towards sustainable food waste management and circular bioeconomy. Animals, 13(8), 1366.

    Article  Google Scholar 

  • Omar, R., Idris, A., Yunus, R., Khalid, K., & Isma, M. A. (2011). Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel, 90(4), 1536–1544.

    Article  Google Scholar 

  • Pandey, A. (1992). Recent process developments in solid-state fermentation. Process Biochemistry, 27, 109–117.

    Article  Google Scholar 

  • Pattanaik, L., Pattnaik, F., Saxena, D. K., & Naik, S. N. (2019). Biofuels from agricultural wastes. In Second and third generation of feedstocks (pp. 103–142). Elsevier.

    Chapter  Google Scholar 

  • Peng, X., Jiang, Y., Chen, Z., Osman, A. I., Farghali, M., Rooney, D. W., & Yap, P.-S. (2023). Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: A review. Environmental Chemistry Letters, 21, 765–801.

    Article  Google Scholar 

  • Rahmani, M., Azadbakht, M., Dastar, B., & Esmaeilzadeh, E. (2022). Production of animal feed from food waste or corn? Analyses of energy and exergy. Bioresource Technology Reports, 20, 101213.

    Article  Google Scholar 

  • Rahmatullah, H., & Rahardja, B. (2020). Different addition of molasses on feed conversion ratio and water quality in catfish (Clarias sp.) rearing with the bio floc-aquaponic system. IOP Conference Series: Earth and Environmental Sciences, 441, 012122.

    Google Scholar 

  • Rajeh, C., Saoud, I. P., Kharroubi, S., Naalbandian, S., & Abiad, M. G. (2021). Food loss and food waste recovery as animal feed: A systematic review. Journal of Material Cycles and Waste Management, 23(1), 1–17.

    Article  Google Scholar 

  • Ranjhan, S. K. (1993). Agro-industrial by-products as a component of livestock rations. In Animal nutrition in the tropics (pp. 222–258). Vikas Publishing House PVT Ltd..

    Google Scholar 

  • Ravindran, V., & Blair, R. (1992). Feed resources for poultry production in Asia and the Pacific. II. Plant protein sources. World Poultry Sci J., 48, 205–231.

    Article  Google Scholar 

  • Ray, R. C. (2020). Sustainable biofuels: Challenges and opportunities (p. 502). Academic Press.

    Google Scholar 

  • Ray, R. C. (2022). Fruits and vegetable wastes: Valorization into bioproducts and platform chemicals (p. 448). Springer.

    Book  Google Scholar 

  • Ray, R. C. (2024). Roots, tubers and bulb crop wastes; management by biorefinery approaches (p. 374). Springer.

    Book  Google Scholar 

  • Ray, R. C., Noe, A.-R., & Sooch, B. S. (2024). Prospective for biorefineries development from roots, tubers and bulb crop wastes and by-products: Value addition and circular economy. In R. C. Ray (Ed.), Roots, tubers and bulb crop wastes: Management by biorefinery approaches (pp. 351–274). Springer.

    Chapter  Google Scholar 

  • Rizal, Y., Mahata, M. E., Andriani, M., & Wu, G. (2010). Utilization of juice wastes as corn replacement in the broiler diet. International Journal of Poultry Science, 9, 886–889.

    Article  Google Scholar 

  • Robinson, T., & Nigam, P. (2003). Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochemical Engineering Journal, 13, 197–203.

    Article  Google Scholar 

  • Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. Biotech, 5(4), 337–353.

    Google Scholar 

  • Salem, M.E., Abdel‐Ghany, H.M., Sallam, A.E., El‐Feky, M.M.M. & Almisherfi, H.M. (2019). Effects of dietary orange peel on growth performance, antioxidant activity, intestinal microbiota and liver histology of gilthead sea bream (Sparus aurata) larvae. Aquatic Nutrition, 25, 1087–1097.

    Google Scholar 

  • Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699–706.

    Article  Google Scholar 

  • Shinde, A., & Mahanta, S. K. (2020). Nutrition of small ruminants on grazing lands in dry zones of India. Range Management and Agroforestry, 41, 1–14.

    Google Scholar 

  • Sinha, A. K., Rakesh, S., Mitra, B., Roy, N., Sahoo, S., Saha, B., et al. (2021). Agricultural waste management policies and programme for environment and nutritional security. In Input use efficiency for food and environmental security (pp. 627–664). Springer.

    Chapter  Google Scholar 

  • Sotiropoulos, A., Malamis, D., & Loizidou, M. J. (2015). Dehydration of domestic food waste at source as an alternative approach for food waste management. Waste and Biomass Valorization, 6, 167–176.

    Article  Google Scholar 

  • Stanton, R., Morrissey, C. A., & Clark, R. G. J. (2018). Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Ecosystem Environment, 254, 244–254.

    Article  Google Scholar 

  • Steinfeld, H., Gerber, P., Wassenaar, T. D., Castel, V., Rosales, M., Rosales, M., & de Haan, C. (2006). Livestock’s long shadow: Environmental issues and options. Food and Agriculture Organization.

    Google Scholar 

  • Sukri, S. A. M., Andu, Y., Harith, Z. T., Sarijan, S., Pauzi, M. N. F., Wei, L. S., Dawood, M. A. O., & Kari, Z. A. (2021). Effect of feeding pineapple waste on growth performance, texture quality and flesh colour of nile tilapia (Oreochromis niloticus) fingerlings. Saudi Journal of Biological Sciences, 29, 2514–2519.

    Article  Google Scholar 

  • Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11.

    Article  Google Scholar 

  • Tinh, T. H., Koppenol, T., Hai, T. N., Verreth, J. A., & Verdegem, M. C. (2021). Effects of carbohydrate sources on a biofloc nursery system for whiteleg shrimp (Litopenaeus vannamei). Aquaculture, 531, 735795.

    Article  Google Scholar 

  • Tsai, W., Lee, M., & Chang, D. Y. (2006). Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 76(1–2), 230–237.

    Article  Google Scholar 

  • Tsonis, S. P., Tsola, V. P., & Grigoropoulos, S. G. (1989). Systematic characterization and chemical treatment of olive oil mill wastewater. Toxicological and Environmental Chemistry, 20(1), 437–457.

    Article  Google Scholar 

  • Verma, D.N. (1997). A text book of animal nutrition (1st ed.). R. 814. New Ra**der Nagar Publications, New Delhi, India.

    Google Scholar 

  • Weisz, U., Pichler, P.-P., Jaccard, I. S., Haas, W., Matej, S., Bachner, F., et al. (2020). Carbon emission trends and sustainability options in Austrian health care. Resources, Conservation and Recycling, 160, 104862.

    Article  Google Scholar 

  • Westendorf, M., Dong, Z., & Schoknecht, P. (1998). Recycled cafeteria food waste as a feed for swine: Nutrient content digestibility, growth and meat quality. Journal of Animal Science, 76(12), 2976–2983.

    Article  Google Scholar 

  • Wheeler, R. R., Hadley, N. M., Dahl, R. W., Williams, T. W., Zavala, D. B., Akse, J. R., & Fisher, J. W. (2007). Microwave enhanced freeze drying of solid waste. SAE Transactions, 116, 510–537.

    Google Scholar 

  • Wieser, H., Koehler, P., & Scherf, K. (2020). Wheat-based raw materials. In Wheat—An exceptional crop (pp. 103–131). Woodhead Publishing.

    Chapter  Google Scholar 

  • Wilkanowska, A., & Kokoszyński, D. (2015). Effect of diet and physical activity of farm animals on their health and reproductive performance. In Handbook of fertility (Vol. 2015, pp. 159–171). Elsevier.

    Chapter  Google Scholar 

  • Wilkinson, J., Rinne, M. J. G., & Science, F. (2018). Highlights of progress in silage conservation and future perspectives. Grass Forage Science, 73, 40–52.

    Article  Google Scholar 

  • Yaashikaa, P., Kumar, P. S., Saravanan, A., Varjani, S., & Ramamurthy, R. (2020). Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Science of the Total Environment, 748, 141312.

    Article  Google Scholar 

  • Yahya, M. A., Al-Qodah, Z., & Ngah, C. Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable and Sustainable Energy Reviews, 46, 218–235.

    Article  Google Scholar 

  • Yan, G., Feng, Y., Long, S., Zeng, X., Sun, Y., Tang, X., & Lin, L. (2020). Challenges with biomass waste valorization. In C. S. K. Lin, G. Kaur, C. Li, & X. Yang (Eds.), Waste valorization: Waste streams in a circular economy (pp. 183–202). Wiley.

    Chapter  Google Scholar 

  • Yin, C.-Y. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 90(3), 1128–1132.

    Article  Google Scholar 

  • Ytrestøyl, T., Aas, T. S., & Åsgård, T. (2015). Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture, 448, 365–374.

    Article  Google Scholar 

  • Zafar, F., Idrees, M., & Ahmed, Z. (2005). Use of apple by-products in poultry rations of broiler chicks in Karachi. Pakistan Journal of Physiology, 1, 1–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marak, T.B., Tiwari, A., Roy, A. (2024). Conversion of Agricultural Residues into High-Value Animal Feed. In: Arora, J., Joshi, A., Ray, R.C. (eds) Transforming Agriculture Residues for Sustainable Development. Waste as a Resource. Springer, Cham. https://doi.org/10.1007/978-3-031-61133-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61133-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61132-2

  • Online ISBN: 978-3-031-61133-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation