Conversion of Agriculture Residues for Bioenergy Production

  • Chapter
  • First Online:
Transforming Agriculture Residues for Sustainable Development

Part of the book series: Waste as a Resource ((WR))

  • 40 Accesses

Abstract

The production of food for the ever-growing population and raw materials for industries has led to the escalation of agricultural activities and the subsequent generation of residues from food production activities. The disposal and management of these agricultural residues have impacted sanitation, human health, and environmental sustainability. The generation of bioenergy from agricultural residue is one of the sustainable waste management strategies owing to its numerous benefits. This chapter reviews the techniques for the collection, pretreatment, and conversion of agricultural residues to produce bioethanol, biohydrogen, biochar, biogas, biojet fuel, and biobutanol for various applications. Crop residues are collected, sorted, and pretreated before conversion to useful renewable energy schemes. The conversion of agricultural residues to bioenergy mitigates environmental hazards, contributes to energy security, corroborates sustainable waste management, and secures access to clean, affordable, and reliable energy sources. More multidisciplinary research is required to further perpetuate the conversion of agricultural residues to useful energy forms. The use of innovative technologies to monitor feedstock pretreatment, optimize conversion process parameters, and meter bioenergy production will enhance the bioenergy production and utilization ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABE :

Acetone-butanol-ethanol

AD:

Anaerobic digestion.

AI:

Artificial intelligence.

ANFIS:

Adaptive neuro-fuzzy inference system

ANNs:

Artificial neural networks

CFD:

Computational fluid dynamics

CO2 :

Carbon dioxide

COD :

Chemical oxygen demand

FB:

Fossil-based

GHGs:

Greenhouse gases

GtCO2:

Billion metric tons

ML :

Machine learning

MMT :

Million metric tons

RSM :

Response surface methods

TWh :

Tetrawatt-hours

References

  • Abdullah, A., Ahmed, A., Akhter, P., Razzaq, A., Hussain, M., Hossain, N., Abu Bakar, M. S., Khurram, S., Majeed, K., & Park, Y. K. (2021). Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview. Journal of Cleaner Production, 287, 125047.

    Article  Google Scholar 

  • Adesina, O. A., Taiwo, A. E., Akintola, O., & Igbafe, A. I. (2023). Optimization of process variables for metallic nanoparticle inclusion in bioethanol synthesis of sugar cane bagasse. Biofuels, 14, 1–6.

    Article  Google Scholar 

  • Ahmed, S. F., Rafa, N., Mofijur, M., Badruddin, I. A., Inayat, A., Ali, M. S., Farrok, O., & Yunus Khan, T. (2021). Biohydrogen production from biomass sources: Metabolic pathways and economic analysis. Frontiers in Energy Research, 9, 753878.

    Article  Google Scholar 

  • Awogbemi, O., & Kallon, D. V. V. (2022a). Application of tubular reactor technologies for the acceleration of biodiesel production. Bioengineering, 9, 347.

    Article  Google Scholar 

  • Awogbemi, O., & Kallon, D. V. V. (2022b). Pretreatment techniques for agricultural waste. Case Studies in Chemical and Environmental Engineering, 6, 100229.

    Article  Google Scholar 

  • Awogbemi, O., & Kallon, D. V. V. (2022c). Valorization of agricultural wastes for biofuel applications. Heliyon, 8, e11117.

    Article  Google Scholar 

  • Awogbemi, O., & Kallon, D. V. V. (2023). Application of biochar derived from crops residues for biofuel production. Fuel Communications, 15, 100088.

    Article  Google Scholar 

  • Awogbemi, O., & Kallon, D. V. V. (2024). Recent advances in the application of nanomaterials for improved biodiesel, biogas, biohydrogen, and bioethanol production. Fuel, 358, 130261.

    Article  Google Scholar 

  • Awogbemi, O., Kallon, D. V. V., Onuh, E. I., & Aigbodion, V. S. (2021). An overview of the classification, production and utilization of biofuels for internal combustion engine applications. Energies, 14, 5687.

    Article  Google Scholar 

  • Bakari, H., Djomdi, D., Falama Ruben, Z., Roger, D. D., Cedric, D., Guillaume, P., Pascal, D., Philippe, M., & Gwendoline, C. (2023). Optimization of bioethanol production after enzymatic treatment of sweet sorghum stalks. Waste and Biomass Valorization, 14, 1–15.

    Article  Google Scholar 

  • Baruya, P. (2015). World forest and agricultural crop residue resources for cofiring. Available from: http://www.usea.org/sites/default/files/042015

  • Behera, S. S., & Ray, R. C. (2021). Bioprospecting of cowdung microflora for sustainable agricultural, biotechnological and environmental applications. Current Research in Microbial Sciences, 2, 100018.

    Article  Google Scholar 

  • Bhurat, K. S., Banerjee, T., Pandey, J. K., & Bhurat, S. S. (2021). A lab fermenter level study on anaerobic hydrogen fermentation using potato peel waste: Effect of pH, temperature, and substrate pre-treatment. Journal of Material Cycles and Waste Management, 23, 1617–1625.

    Article  Google Scholar 

  • Bu, J., Wei, H. L., Wang, Y. T., Cheng, J. R., & Zhu, M. J. (2021). Biochar boosts dark fermentative H2 production from sugarcane bagasse by selective enrichment/colonization of functional bacteria and enhancing extracellular electron transfer. Water Research, 202, 117440.

    Article  Google Scholar 

  • Cervi, W. R., Lamparelli, R. A. C., Gallo, B. C., De Oliveira Bordonal, R., Seabra, J. E. A., Junginger, M., & Van Der Hilst, F. (2021). Map** the environmental and techno-economic potential of biojet fuel production from biomass residues in Brazil. Biofuels, Bioproducts and Biorefining, 15, 282–304.

    Article  Google Scholar 

  • Chaudhary, A., Hussain, A., Ahmad, Q.-U.-A., Manzoor, M., Tahira, S. A., & Karita, S. (2022). Statistical optimization of alkaline treatment of pomegranate peel waste for bioethanol production. Biomass Conversion and Biorefinery, 1–13.

    Google Scholar 

  • Cheah, W. Y., Sankaran, R., Show, P. L., Ibrahim, T., Baizura, T. N., Chew, K. W., Culaba, A., & Chang, J. S. (2020). Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Research Journal, 7, 1115–1127.

    Article  Google Scholar 

  • Cheng, C. L., Che, P. Y., Chen, B. Y., Lee, W. J., Lin, C. Y., & Chang, J. S. (2012). Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Applied Energy, 100, 3–9.

    Article  Google Scholar 

  • Chiappero, M., Cillerai, F., Berruti, F., Mašek, O., & Fiore, S. (2021). Addition of different biochars as catalysts during the mesophilic anaerobic digestion of mixed wastewater sludge. Catalysts, 11, 1094.

    Article  Google Scholar 

  • Díaz, M. J., Moya, M., & Castro, E. (2022). Bioethanol production from steam-exploded barley straw by co-fermentation with Escherichia coli SL100. Agronomy, 12, 874.

    Article  Google Scholar 

  • Emmanouilidou, E., Mitkidou, S., Agapiou, A., & Kokkinos, N. C. (2023). Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review. Renewable Energy, 206, 897–907.

    Article  Google Scholar 

  • Enaime, G., & Lübken, M. (2021). Agricultural waste-based biochar for agronomic applications. Applied Sciences, 11, 8914.

    Article  Google Scholar 

  • Global Biochar Market. (2022–2028). Available online https://www.tritonmarketresearch.com/reports/biochar-market#report

  • GlobeNewsire. (2022). Bioethanol market size. Available online https://www.globenewswire.com/en/news-release/2022/10/11/2532393/0/en/Bioethanol-Market-Size-to-Worth-Around-USD-124-5-Billion-by-2030.html

  • Gökçek, Ö. B., Baş, F., Muratçobanoğlu, H., & Demirel, S. (2023). Investigation of the effects of magnetite addition on biohydrogen production from apple pulp waste. Fuel, 339, 127475.

    Article  Google Scholar 

  • Hao, J., **ao, J., Song, G., & Zhang, Q. (2021). Energy and exergy analysis of bio-jet fuel production from lignocellulosic biomass via aqueous conversion. Case Studies in Thermal Engineering, 26, 101006.

    Article  Google Scholar 

  • IEA. (2023). Aviation. Available online https://www.iea.org/energy-system/transport/aviation

  • IRENA. (2021). Reaching zero with renewables: Biojet fuels. Available online www.irena.org/publications

  • John, I., Yaragarla, P., & Appusamy, A. (2020). Production of bioethanol from Banana Peel using isolated cellulase from Aspergillus Niger. In V. Sivasubramanian & S. Subramanian (Eds.), Global challenges in energy and environment: Select proceedings of ICEE 2018 (pp. 9–18). Springer.

    Chapter  Google Scholar 

  • Kapil, S., Vinayak, A., Pal, N., & Sharma, V. (2023). Application of nanotechnology in biobutanol production. In J. G. Segovia-Hernandez, S. Behera, & E. Sanchez-Ramirez (Eds.), Advances and developments in biobutanol production (pp. 363–379). Woodhead Publishing.

    Chapter  Google Scholar 

  • Kasinath, A., Byliński, H., Artichowicz, W., Remiszewska-Skwarek, A., Szopińska, M., Zaborowska, E., Luczkiewicz, A., & Fudala-Ksiazek, S. (2023). Biochemical assays of intensified methane content in biogas from low-temperature processing of waste activated sludge. Energy, 282, 128855.

    Article  Google Scholar 

  • Khalili, F., & Amiri, H. (2020). Integrated processes for production of cellulosic and hemicellulosic biobutanol from sweet sorghum bagasse using autohydrolysis. Industrial Crops and Products, 145, 111918.

    Article  Google Scholar 

  • Khanal, S. K., Tarafdar, A., & You, S. (2023). Artificial intelligence and machine learning for smart bioprocesses. Bioresource Technology, 375, 128826.

    Article  Google Scholar 

  • Khanh Nguyen, V., Kumar Chaudhary, D., Hari Dahal, R., Hoang Trinh, N., Kim, J., Chang, S. W., Hong, Y., Duc La, D., Nguyen, X. C., Hao Ngo, H., Chung, W. J., & Nguyen, D. D. (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105.

    Article  Google Scholar 

  • Kolo, S. M. D., Wahyuningrum, D., & Hertadi, R. (2020). The effects of microwave-assisted pretreatment and cofermentation on bioethanol production from elephant grass. International Journal of Microbiology, 2020, 1–11.

    Article  Google Scholar 

  • Kumar Sharma, A., Kumar Ghodke, P., Goyal, N., Nethaji, S., & Chen, W. H. (2022). Machine learning technology in biohydrogen production from agriculture waste: Recent advances and future perspectives. Bioresource Technology, 364, 128076.

    Article  Google Scholar 

  • Lim, M., Luckert, M. K., & Qiu, F. (2023). Economic opportunities and challenges in biojet production: A literature review and analysis. Biomass and Bioenergy, 170, 106727.

    Article  Google Scholar 

  • Liu, M., Wei, Y., & Leng, X. (2021). Improving biogas production using additives in anaerobic digestion: A review. Journal of Cleaner Production, 297, 126666.

    Article  Google Scholar 

  • Liu, T., Ferrari, G., Pezzuolo, A., Alengebawy, A., **, K., Yang, G., Li, Q., & Ai, P. (2023). Evaluation and analysis of biogas potential from agricultural waste in Hubei Province. China. Agricultural Systems, 205, 103577.

    Article  Google Scholar 

  • Maache-Rezzoug, Z., Semhaoui, I., Maugard, T., Zarguili, I., Zhao, J. M. Q., Nouviaire, A., Pontoire, B., & Rezzoug, S. A. (2023). Enhancing enzymatic hydrolysis of industrial hemp hurds (Cannabis sativa L.) by combination of soaking in dilute acid and steam pretreatment. Biomass Conversion and Biorefinery, 1–15.

    Google Scholar 

  • Machineni, L., Deepanraj, B., Chew, K. W., & Rao, A. G. (2023). Biohydrogen production from lignocellulosic feedstock: Abiotic and biotic methods. Renewable and Sustainable Energy Reviews, 182, 113344.

    Article  Google Scholar 

  • Malik, K., Salama, E.-S., El-Dalatony, M. M., Jalalah, M., Harraz, F. A., Al-Assiri, M. S., Zheng, Y., Sharma, P., & Li, X. (2021). Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: Long-term investigation. Industrial Crops and Products, 159, 113122.

    Article  Google Scholar 

  • Market Research Report. (2022). Renewable/biojet market analysis. Available online. https://www.coherentmarketinsights.com/market-insight/renewable-bio-jet-fuel-market-

  • Md Razali, N. A. A., Ibrahim, M. F., Kamal Bahrin, E., & Abd-Aziz, S. (2018). Optimisation of simultaneous saccharification and fermentation (SSF) for biobutanol production using pretreated oil palm empty fruit bunch. Molecules, 23, 1944.

    Article  Google Scholar 

  • Mikulski, D., & Kłosowski, G. (2020). Microwave-assisted dilute acid pretreatment in bioethanol production from wheat and rye stillages. Biomass and Bioenergy, 136, 105528.

    Article  Google Scholar 

  • Mohd Jamaludin, N. F., Jamali, N. S., Abdullah, L. C., Idrus, S., Engliman, N. S., & Abdul, P. M. (2023). Biohydrogen production with utilisation of magnetite nanoparticles embedded in granular activated carbon from coconut shell. International Journal of Hydrogen Energy, 48, 11695–11708.

    Article  Google Scholar 

  • Moodley, P., Ray, R. C., & Kana, E. B. G. (2023). Advances in Lignocellulosic biofuel production systems. Elsevier, 436.

    Google Scholar 

  • Moreno-Gómez, A. L., Gutiérrez-Antonio, C., Gómez-Castro, F. I., & Hernández, S. (2020). Production of biojet fuel from waste raw materials: A review. In A. Bonilla-Petriciolet & G. P. Rangaiah (Eds.), Process systems engineering for biofuels development (pp. 149–171). Wiley.

    Chapter  Google Scholar 

  • Muanruksa, P., Winterburn, J., & Kaewkannetra, P. (2021). Biojet fuel production from waste of palm oil mill effluent through enzymatic hydrolysis and decarboxylation. Catalysts, 11, 78.

    Article  Google Scholar 

  • Mumtha, C., Subashri, D., & Mahalingam, P. U. (2023). Enhancing biohydrogen production from mono-substrates and co-substrates using a novel bacterial strains. Biotech, 13, 270.

    Google Scholar 

  • Novia, N., Hasanudin, H., Hermansyah, H., Fudholi, A., & Pareek, V. K. (2023). Recent advances in CFD modeling of bioethanol production processes. Renewable and Sustainable Energy Reviews, 183, 113522.

    Article  Google Scholar 

  • Our Wolrd in Data. (2023). Energy consumption by source, world. Availabe online https://ourworldindata.org/grapher/energy-consumption-by-source-and-country?stackMode=absolute&time=1990

  • Our World in Data. (2022). Global CO2 emissions from fossil fuels. Available online https://ourworldindata.org/co2-emissions

  • Owuna, G., Makut, M., Ekeleme, I., & Obiekezie, S. (2018). Isolation, identification and production of biobutanol by different clostridium species isolated from soil using waste paper and sugar cane molasses. South Asian Journal of Research in Microbiology, 2, 1–9.

    Article  Google Scholar 

  • Pant, S., Ritika, & Kuila, A. (2022). Pretreatment of lignocellulosic biomass for bioethanol production. In D. Tuli, S. Kasture, & A. Kuila (Eds.), Advanced biofuel technologies (pp. 177–194). Elsevier.

    Chapter  Google Scholar 

  • Precedence Research. (2022). Biogas market. Available Online https://www.precedenceresearch.com/biogas-market

  • PRNewswire. (2018). Global hydrogen generation market 2017–2018 & 2026. Available online https://www.prnewswire.com/news-releases/global-hydrogen-generation-market-2017-2018-2026

  • Quah, R. V., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M., Abdullah, E. C., & Abdullah, M. O. (2020). Magnetic biochar derived from waste palm kernel shell for biodiesel production via sulfonation. Waste Management, 118, 626–636.

    Article  Google Scholar 

  • Rahimi, Z., Anand, A., & Gautam, S. (2022). An overview on thermochemical conversion and potential evaluation of biofuels derived from agricultural wastes. Energy Nexus, 7, 100125.

    Article  Google Scholar 

  • Rajendran, N., Kang, D., Han, J., & Gurunathan, B. (2022). Process optimization, economic and environmental analysis of biodiesel production from food waste using a citrus fruit peel biochar catalyst. Journal of Cleaner Production, 365, 132712.

    Article  Google Scholar 

  • Ray, R. C., & Ramachandran, S. (2018). Bioethanol production from food crops: Sustainable sources, interventions, and challenges (p. 460p). Academic.

    Google Scholar 

  • Ren, Y., Tang, S., Hong, F., Jiang, W., Liu, Z., Lu, H., Wang, C., & Si, B. (2023). Effects of milli-magnetite on biohydrogen production from potato peels: Insight of metabolism mechanisms. Fuel, 348, 128576.

    Article  Google Scholar 

  • Rodríguez-Valderrama, S., Escamilla-Alvarado, C., Magnin, J. P., Rivas-García, P., Valdez-Vazquez, I., & Ríos-Leal, E. (2020). Batch biohydrogen production from dilute acid hydrolyzates of fruits-and-vegetables wastes and corn Stover as co-substrates. Biomass and Bioenergy, 140, 105666.

    Article  Google Scholar 

  • Sachdeva, S., Kumar, R., Sahoo, P. K., & Nadda, A. K. (2023). Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. Environmental Pollution, 319, 120937.

    Article  Google Scholar 

  • Saeed, M., Mohammad, A., Singh, P., Lal, B., Suliman, M., Alshahrani, M. Y., & Sharma, M. (2023). Coconut waste valorization to produce biochar catalyst and its application in cellulose-degrading enzymes production via SSF. International Journal of Biological Macromolecules, 240, 124382.

    Article  Google Scholar 

  • Sarkar, J. D., Sarkar, A. K., & Mondal, P. (2023). Sustainable manipulation of agricultural residues in bioenergy production: Asian perspective. In A. Rakshit, A. Biswas, D. Sarkar, V. S. Meena, & R. Datta (Eds.), Handbook of energy management in agriculture (pp. 1–25). Springer.

    Google Scholar 

  • Shanmugam, S., Sun, C., Chen, Z., & Wu, Y. R. (2019). Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy. Bioresource Technology, 279, 149–155.

    Article  Google Scholar 

  • Shen, Y., Linville, J. L., Urgun-Demirtas, M., Schoene, R. P., & Snyder, S. W. (2015). Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn Stover biochar with in-situ CO2 removal. Applied Energy, 158, 300–309.

    Article  Google Scholar 

  • Shukla, A., Kumar, D., Girdhar, M., Kumar, A., Goyal, A., Malik, T., & Mohan, A. (2023). Strategies of pretreatment of feedstocks for optimized bioethanol production: Distinct and integrated approaches. Biotechnology for Biofuels and Bioproducts, 16, 44.

    Article  Google Scholar 

  • Singh, A., Prajapati, P., Vyas, S., Gaur, V. K., Sindhu, R., Binod, P., Kumar, V., Singhania, R. R., Awasthi, M. K., & Zhang, Z. (2023). A comprehensive review of feedstocks as sustainable substrates for next-generation biofuels. Bioenergy Research, 16, 105–122.

    Article  Google Scholar 

  • Song, J., Liu, C., **ng, J., Yang, W., & Ren, J. (2023). Linking bioenergy production by agricultural residues to sustainable development goals: Prospects by 2030 in China. Energy Conversion and Management, 276, 116568.

    Article  Google Scholar 

  • Srivastava, N., Singh, R., Ahmad, I., Asiri, M., Tripathi, S. C., Rai, A. K., Mishra, P. K., & Gupta, V. K. (2023). Biologically derived copper oxide-based nanocatalyst using Moringa oleifera leaves and its applications in hydrolytic enzymes and biohydrogen production. Bioresource Technology, 376, 128847.

    Article  Google Scholar 

  • Statista. (2021). Global hydrogen production outlook by type 2015–2050. Available online https://www.statista.com/statistics/859104/hydrogen-production-outlook-worldwide-by-type/

  • Statista. (2023). Global biogas production 2000–2020. Available online https://www.statista.com/statistics/481791/biogas-production-worldwide/

  • Taiwo, A. E., & Musonge, P. (2023). Comparative evaluation of bioethanol fermentation process parameters using RSM, ANN and ANFIS. Biofuels, Bioproducts and Biorefining, 17, 961–975.

    Article  Google Scholar 

  • Tallentire, C. W., & Steubing, B. (2020). The environmental benefits of improving packaging waste collection in Europe. Waste Management, 103, 426–436.

    Article  Google Scholar 

  • Tamburini, E., Gaglio, M., Castaldelli, G., & Fano, E. A. (2020). Biogas from agri-food and agricultural waste can appreciate agro-ecosystem services: The case study of Emilia Romagna region. Sustainability, 12, 8392.

    Article  Google Scholar 

  • Tran, T. T. A., Le, T. K. P., Mai, T. P., & Nguyen, D. Q. (2020). Bioethanol production from lignocellulosic biomass. In Y. Yun (Ed.), Alcohol fuels-current technologies and future prospect (pp. 1–8). Rijeka.

    Google Scholar 

  • Vela-García, N., Bolonio, D., García-Martínez, M.-J., Ortega, M. F., & Canoira, L. (2022). Thermochemical conversion of agricultural waste to biojet fuel. In A. Yousuf & C. Gonzalez-Fernandez (Eds.), Sustainable alternatives for aviation fuels (p. 27). Elsevier.

    Chapter  Google Scholar 

  • Wang, J., Ma, D., Lou, Y., Ma, J., & **ng, D. (2023). Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects. Science of the Total Environment, 905, 166992.

    Article  Google Scholar 

  • Waqas, M., Aburiazaiza, A. S., Miandad, R., Rehan, M., Barakat, M. A., & Nizami, A. S. (2018). Development of biochar as fuel and catalyst in energy recovery technologies. Journal of Cleaner Production, 188, 477–488.

    Article  Google Scholar 

  • Weide, T., Baquero, C. D., Schomaker, M., Brügging, E., & Wetter, C. (2020). Effects of enzyme addition on biogas and methane yields in the batch anaerobic digestion of agricultural waste (silage, straw, and animal manure). Biomass and Bioenergy, 132, 105442.

    Article  Google Scholar 

  • Yan, B., Yan, J., Li, Y., Qin, Y., & Yang, L. (2021). Spatial distribution of biogas potential, utilization ratio and development potential of biogas from agricultural waste in China. Journal of Cleaner Production, 292, 126077.

    Article  Google Scholar 

  • Zhang, X., Zhang, Q., Li, Y., & Zhang, H. (2023). Modeling and optimization of photo-fermentation biohydrogen production from co-substrates based on response surface methodology and artificial neural network integrated genetic algorithm. Bioresource Technology, 374, 128789.

    Article  Google Scholar 

  • Zhao, L., Wu, K. K., Chen, C., Ren, H. Y., Wang, Z.-H., Nan, J., Yang, S. S., Cao, G. L., & Ren, N. Q. (2021). Role of residue cornstalk derived biochar for the enhanced bio-hydrogen production via simultaneous saccharification and fermentation of cornstalk. Bioresource Technology, 330, 125006.

    Article  Google Scholar 

  • Zhou, Y., Wang, X., Huang, X., Deng, H., Hu, Y., & Lu, L. (2023). Tuning the isoelectric point of zinc molybdate nanomaterials to enhance the biohydrogen production of rice straws. Chemical Engineering Journal, 452, 139458.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awogbemi, O., Von Kallon, D.V., Ray, R.C. (2024). Conversion of Agriculture Residues for Bioenergy Production. In: Arora, J., Joshi, A., Ray, R.C. (eds) Transforming Agriculture Residues for Sustainable Development. Waste as a Resource. Springer, Cham. https://doi.org/10.1007/978-3-031-61133-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61133-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61132-2

  • Online ISBN: 978-3-031-61133-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation