A Bibliometric Analysis of Cognitive Load Sensing Methodologies and Its Applications

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (HCII 2024)

Abstract

Cognitive workload refers to the amount of mental resources a person expends while performing a task or processing information. Recent trends in the field have shown that cognitive load can be estimated through the use of physiological sensing techniques such as electroencephalograms (EEG), eye tracking, and electromyography (EMG). As these technologies are developed to be smaller, faster, smarter, and stronger, it has become more feasible to record physiological measurements in natural user environments and contexts, reducing challenges to generalizability and ecological validity. To gain a better understanding of the field and discuss where it is heading, our team completed a bibliometric analysis on the history, current state, and recent trends in the field of cognitive workload sensing and its applications. A literature review was conducted utilizing leading tables to analyze the most influential papers in the field. Further, an analysis of trends in the field is included to discuss the history of the field and its direction. It is shown that the field is still emerging, with a rapid growth of publications starting at the beginning of the 21st century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Institute of Medicine (US) Committee on Quality of Health Care in America, To Err is Human: Building a Safer Health System. Washington (DC): National Academies Press (US) (2000). http://www.ncbi.nlm.nih.gov/books/NBK225182/. Accessed 07 Dec 2023

  2. Ncubukezit, T.: Human errors: a cybersecurity concern and the weakest link to small businesses. In: ICCWS, vol. 17, no. 1, Article no. 1 (2022). https://doi.org/10.34190/iccws.17.1.51

  3. Wilson, K.A., Salas, E., Priest, H.A., Andrews, D.: Errors in the heat of battle: taking a closer look at shared cognition breakdowns through teamwork. Hum. Factors 49(2), 243–256 (2007). https://doi.org/10.1518/001872007X312478

    Article  Google Scholar 

  4. van Gog, T., Paas, F., Sweller, J.: Cognitive load theory: advances in research on worked examples, animations, and cognitive load measurement. Educ. Psychol. Rev. 22(4), 375–378 (2010). https://doi.org/10.1007/s10648-010-9145-4

    Article  Google Scholar 

  5. Wu, C., et al.: Eye-tracking metrics predict perceived workload in robotic surgical skills training. Hum. Factors 62(8), 1365–1386 (2020). https://doi.org/10.1177/0018720819874544

    Article  Google Scholar 

  6. Anton, N.E., et al.: Detailing experienced nurse decision making during acute patient care simulations. Appl. Ergon. 109, 103988 (2023). https://doi.org/10.1016/j.apergo.2023.103988

    Article  Google Scholar 

  7. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Advances in Psychology in Human Mental Workload, vol. 52, pp. 139–183. North-Holland (1988). https://doi.org/10.1016/S0166-4115(08)62386-9

  8. Berka, C., et al.: Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. Int. J. Hum.-Comput. Interact. 17(2), 151–170 (2004). https://doi.org/10.1207/s15327590ijhc1702_3

    Article  Google Scholar 

  9. Yang, J., Barragan, J.A., Farrow, J.M., Sundaram, C.P., Wachs, J.P., Yu, D.: An adaptive human-robotic interaction architecture for augmenting surgery performance using real-time workload sensing—demonstration of a semi-autonomous suction tool. Hum. Factors 00187208221129940 (2022). https://doi.org/10.1177/00187208221129940

  10. Hancock, G.M., Longo, L., Young, M.S., Hancock, P.A.: Mental workload. In: Salvendy, G., Karwowski, W. (eds.) Handbook of Human Factors and Ergonomics, 5th edn., pp. 203–226. Wiley (2021)

    Google Scholar 

  11. Paas, F., Tuovinen, J.E., Tabbers, H., Van Gerven, P.W.M.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003). https://doi.org/10.1207/S15326985EP3801_8

    Article  Google Scholar 

  12. Paas, F., Renkl, A., Sweller, J.: Cognitive load theory: instructional implications of the interaction between information structures and cognitive architecture. Instr. Sci. 32(1), 1–8 (2004). https://doi.org/10.1023/B:TRUC.0000021806.17516.d0

    Article  Google Scholar 

  13. Sweller, J.: Element interactivity and intrinsic, extraneous, and germane cognitive load. Educ. Psychol. Rev. 22(2), 123–138 (2010). https://doi.org/10.1007/s10648-010-9128-5

    Article  Google Scholar 

  14. Leppink, J., Paas, F., van Gog, T., van der Vleuten, C.P.M., van Merriënboer, J.J.G.: Effects of pairs of problems and examples on task performance and different types of cognitive load. Learn. Instr. 30, 32–42 (2014). https://doi.org/10.1016/j.learninstruc.2013.12.001

    Article  Google Scholar 

  15. Ayaz, H., Dehais, F.: Neuroergonomics. In: Salvendy, G., Karwowski, W. (eds.) Handbook of Human Factors and Ergonomics, 5th edn., pp. 816–841. Wiley (2021)

    Google Scholar 

  16. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W.M.: How to conduct a bibliometric analysis: an overview and guidelines. J. Bus. Res. 133, 285–296 (2021). https://doi.org/10.1016/j.jbusres.2021.04.070

    Article  Google Scholar 

  17. Harzing, A.-W.: “Publish or Perish,” Harzing.com. https://harzing.com/resources/publish-or-perish. Accessed 15 Feb 2024

  18. van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric map**. Scientometrics 84(2), 523–538 (2010). https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  19. “MAXQDA | All-In-One Qualitative & Mixed Methods Data Analysis Tool,” MAXQDA. https://www.maxqda.com/. Accessed: Dec. 01, 2023

  20. Obuseh, M., Duffy, V.G.: Surgical human-robot interaction: a bibliometric review. In: Kurosu, M., et al. (eds.) HCII 2022, pp. 293–312. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17618-0_22

    Chapter  Google Scholar 

  21. Molotok, I.F.: Bibliometric and trend analysis of budget transparency. BEL 4(2), 116–122 (2020). https://doi.org/10.21272/bel.4(2).116-122.2020

    Article  Google Scholar 

  22. “Google Books Ngram Viewer.” https://books.google.com/ngrams/. Accessed 01 Dec 2023

  23. Abdelrahman, Y., Velloso, E., Dingler, T., Schmidt, A., Vetere, F.: Cognitive heat: exploring the usage of thermal imaging to unobtrusively estimate cognitive load. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1(3), 33:1–33:20 (2017). https://doi.org/10.1145/3130898

  24. Conway, D., Dick, I., Li, Z., Wang, Y., Chen, F.: The effect of stress on cognitive load measurement. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8120, pp. 659–666. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40498-6_58

    Chapter  Google Scholar 

  25. Ismail, L.E., Karwowski, W.: Applications of EEG indices for the quantification of human cognitive performance: a systematic review and bibliometric analysis. PLoS ONE 15(12), e0242857 (2020). https://doi.org/10.1371/journal.pone.0242857

    Article  Google Scholar 

  26. Yang, J., Liang, N., Pitts, B.J., Prakah-Asante, K., Curry, R., Yu, D.: An eye-fixation related electroencephalography technique for predicting situation awareness: implications for driver state monitoring systems. Hum. Factors 00187208231204570 (2023). https://doi.org/10.1177/00187208231204570

  27. Yang, J., et al.: Multimodal sensing and computational intelligence for situation awareness classification in autonomous driving. IEEE Trans. Hum.-Mach. Syst. 53(2), 270–281 (2023). https://doi.org/10.1109/THMS.2023.3234429

    Article  Google Scholar 

  28. Barragan, J.A., Chanci, D., Yu, D., Wachs, J.P.: SACHETS: semi-autonomous cognitive hybrid emergency teleoperated suction. In: 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), pp. 1243–1248 (2021). https://doi.org/10.1109/RO-MAN50785.2021.9515517

  29. Mattys, S.L., Wiget, L.: Effects of cognitive load on speech recognition. J. Mem. Lang. 65(2), 145–160 (2011). https://doi.org/10.1016/j.jml.2011.04.004

    Article  Google Scholar 

  30. Zihisire Muke, P., Piwowarczyk, M., Telec, Z., Trawiński, B., Maharani, P.A., Bresso, P.: Impact of the Stroop effect on cognitive load using subjective and psychophysiological measures. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds.) ICCCI 2021. LNCS (LNAI), vol. 12876, pp. 180–196. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88081-1_14

    Chapter  Google Scholar 

  31. Mehta, R.: NSF Award Search: Award # 2343187 - CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots. https://www.nsf.gov/awardsearch/showAward?AWD_ID=2343187. Accessed 01 Dec 2023

  32. Arnaoudova, V.: NSF Award Search: Award # 1755995 - CRII: SHF: Quantifying the Impact of Poor Quality Lexicon on Developers’ Cognitive Load. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1755995. Accessed 01 Dec 2023

  33. Cyber-Physical Systems (CPS) | NSF - National Science Foundation. https://new.nsf.gov/funding/opportunities/cyber-physical-systems-cps. Accessed 15 Feb 2024

  34. Kaber, D.: NSF Award Search: Award # 1900044 - CHS: Medium: Collaborative Research: Electromyography (EMG)-Based Assistive Human-Machine Interface Design: Cognitive Workload and Motor Skill Learning Assessment. https://www.nsf.gov/awardsearch/showAward?AWD_ID=1900044. Accessed 01 Dec 2023

  35. Salvendy, G., Karwowski, W.: Handbook of Human Factors and Ergonomics, 5th edn. Wiley, Hoboken (2021)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Thomas Villarreal .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villarreal, R.T., Nordstrom, P.A., Duffy, V.G. (2024). A Bibliometric Analysis of Cognitive Load Sensing Methodologies and Its Applications. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. HCII 2024. Lecture Notes in Computer Science, vol 14709. Springer, Cham. https://doi.org/10.1007/978-3-031-61060-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61060-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61059-2

  • Online ISBN: 978-3-031-61060-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation