Coordinate-Based Meta-Analyses of the Time Perception Network

  • Chapter
  • First Online:
Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1455))

  • 97 Accesses

Abstract

The study of time perception has advanced over the past three decades to include numerous neuroimaging studies, most notably including the use of functional Magnetic Resonance Imaging (fMRI). Yet, with this increase in studies, there comes the desire to draw broader conclusions across datasets about the nature and instantiation of time in the human brain. In the absence of collating individual studies together, the field has employed the use of Coordinate-Based Meta-Analyses (CBMA), in which foci from individual studies are modeled as probability distributions within the brain, from which common areas of activation-likelihood are determined. This chapter provides an overview of these CBMA studies, the methods they employ, the conclusions drawn by them, and where future areas of inquiry lie. The result of this survey suggests the existence of a domain-general “timing network” that can be used both as a guide for individual neuroimaging studies and as a template for future meta-analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar, F., Seurinck, R., Eickhoff, S. B., & Moerkerke, B. (2018). Assessing robustness against potential publication bias in Activation Likelihood Estimation (ALE) meta-analyses for fMRI. PLoS One, 13, e0208177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allman, M. J., Teki, S., Griffiths, T. D., & Meck, W. H. (2014). Properties of the internal clock: First- and second-order principles of subjective time. Annual Review of Psychology, 65, 743–771.

    Article  PubMed  Google Scholar 

  • Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427.

    Article  PubMed  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Bueti, D. (2011). The sensory representation of time. Frontiers in Integrative Neuroscience, 5, 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bueti, D., Walsh, V., Frith, C., & Rees, G. (2008). Different brain circuits underlie motor and perceptual representations of temporal intervals. Journal of Cognitive Neuroscience, 20, 204–214.

    Article  PubMed  Google Scholar 

  • Chein, J. M., Fissell, K., Jacobs, S., & Fiez, J. A. (2002). Functional heterogeneity within Broca’s area during verbal working memory. Physiology & Behavior, 77, 635–639.

    Article  CAS  Google Scholar 

  • Chu, C., Fan, L., Eickhoff, C. R., Liu, Y., Yang, Y., Eickhoff, S. B., & Jiang, T. (2015). Co-activation Probability Estimation (CoPE): An approach for modeling functional co-activation architecture based on neuroimaging coordinates. NeuroImage, 117, 397–407.

    Article  PubMed  Google Scholar 

  • Cona, G., Wiener, M., & Scarpazza, C. (2021). From ATOM to GradiATOM: Cortical gradients support time and space processing as revealed by a meta-analysis of neuroimaging studies. NeuroImage, 224, 117407.

    Article  PubMed  Google Scholar 

  • Costa, T., Manuello, J., Ferraro, M., Liloia, D., Nani, A., Fox, P. T., Lancaster, J., & Cauda, F. (2021). BACON: A tool for reverse inference in brain activation and alteration. Human Brain Map**, 42, 3343–3351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coull, J., & Nobre, A. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 18, 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Map**, 30, 2907–2926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59, 2349–2361.

    Article  PubMed  Google Scholar 

  • Fox, P. T., Parsons, L. M., & Lancaster, J. L. (1998). Beyond the single study: Function/location metanalysis in cognitive neuroimaging. Current Opinion in Neurobiology, 8, 178–187.

    Article  CAS  PubMed  Google Scholar 

  • Fox, P. T., Lancaster, J. L., Laird, A. R., & Eickhoff, S. B. (2014). Meta-analysis in human neuroimaging: Computational modeling of large-scale databases. Annual Review of Neuroscience, 37, 409–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grady, C. L., Rieck, J. R., Nichol, D., Rodrigue, K. M., & Kennedy, K. M. (2021). Influence of sample size and analytic approach on stability and interpretation of brain-behavior correlations in task-related fMRI data. Human Brain Map**, 42, 204–219.

    Article  PubMed  Google Scholar 

  • Hart, H., Radua, J., Mataix-Cols, D., & Rubia, K. (2012). Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neuroscience and Biobehavioral Reviews, 36, 2248–2256.

    Article  PubMed  Google Scholar 

  • Laird, A. R., Fox, P. M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., Turkeltaub, P. E., Kochunov, P., & Fox, P. T. (2005a). ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts. Human Brain Map**, 25, 155–164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005b). BrainMap: The social evolution of a human brain map** database. Neuroinformatics, 3, 065–078. https://doi.org/10.1385/ni:3:1:065

    Article  Google Scholar 

  • Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & Fox, P. T. (2005c). A comparison of label-based review and ALE meta-analysis in the Stroop task. Human Brain Map**, 25, 6–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laird, A. R., Eickhoff, S. B., Li, K., Robin, D. A., Glahn, D. C., & Fox, P. T. (2009). Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. The Journal of Neuroscience, 29, 14496–14505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonardi, N., & Van, D. V. D. (2015). On spurious and real fluctuations of dynamic functional connectivity during rest. NeuroImage, 104, 430–436.

    Article  PubMed  Google Scholar 

  • Lewis, P. A., & Miall, R. C. (2003). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13, 250–255.

    Article  CAS  PubMed  Google Scholar 

  • Livesey, A. C., Wall, M. B., & Smith, A. T. (2007). Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia, 45, 321–331.

    Article  PubMed  Google Scholar 

  • Macar, F., Lejeune, H., Bonnet, M., Ferrara, A., Pouthas, V., Vidal, F., & Maquet, P. (2002). Activation of the supplementary motor area and of attentional networks during temporal processing. Experimental Brain Research, 142, 475–485.

    Article  CAS  PubMed  Google Scholar 

  • Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Brain Research. Cognitive Brain Research, 21, 139–170.

    Article  PubMed  Google Scholar 

  • Mattar, M. G., Cole, M. W., Thompson-Schill, S. L., & Bassett, D. S. (2015). A functional cartography of cognitive systems. PLoS Computational Biology, 11, e1004533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthews, W. J., & Meck, W. H. (2014). Time perception: The bad news and the good. Wiley Interdisciplinary Reviews: Cognitive Science, 5, 429–446.

    PubMed  Google Scholar 

  • Matthews, W. J., & Meck, W. H. (2016). Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychological Bulletin, 142, 865–907.

    Article  PubMed  Google Scholar 

  • McGonigle, D. J., Howseman, A. M., Athwal, B. S., Friston, K. J., Frackowiak, R. S., & Holmes, A. P. (2000). Variability in fMRI: An examination of intersession differences. NeuroImage, 11, 708–734.

    Article  CAS  PubMed  Google Scholar 

  • Merchant, H., Harrington, D. L., & Meck, W. H. (2013). Neural basis of the perception and estimation of time. Annual Review of Neuroscience, 36, 313–336.

    Article  CAS  PubMed  Google Scholar 

  • Mondok, C., & Wiener, M. (2022). Selectivity of timing: A meta-analysis of temporal processing in neuroimaging studies using activation likelihood estimation and reverse inference. Frontiers in Human Neuroscience, 16, 1000995.

    Article  PubMed  Google Scholar 

  • Naghibi, N., Jahangiri, N., Khosrowabadi, R., Eickhoff, C. R., Eickhoff, S. B., Coull, J. T., & Tahmasian, M. (2023). Embodying time in the brain: A multi-dimensional neuroimaging meta-analysis of 95 duration processing studies. Neuropsychology Review, 34, 277. https://doi.org/10.1007/s11065-023-09588-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Nani, A., Manuello, J., Liloia, D., Duca, S., Costa, T., & Cauda, F. (2019). The neural correlates of time: A meta-analysis of neuroimaging studies. Journal of Cognitive Neuroscience, 31, 1796–1826.

    Article  PubMed  Google Scholar 

  • Ortuño, F., Guillén-Grima, F., López-García, P., Gómez, J., & Pla, J. (2011). Functional neural networks of time perception: Challenge and opportunity for schizophrenia research. Schizophrenia Research, 125, 129–135.

    Article  PubMed  Google Scholar 

  • Paton, J. J., & Buonomano, D. V. (2018). The neural basis of timing: Distributed mechanisms for diverse functions. Neuron, 98, 687–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penney, T. B., & Vaitilingam, L. (2008). Imaging time. Psychology of time, 261–294.

    Google Scholar 

  • Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10, 59–63.

    Article  PubMed  Google Scholar 

  • Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. The British Journal of Psychiatry, 195, 393–402.

    Article  PubMed  Google Scholar 

  • Radua, J., del Pozo, N. O., Gómez, J., Guillen-Grima, F., & Ortuño, F. (2014). Meta-analysis of functional neuroimaging studies indicates that an increase of cognitive difficulty during executive tasks engages brain regions associated with time perception. Neuropsychologia, 58, 14–22.

    Article  PubMed  Google Scholar 

  • Rao, S. M., Binder, J. R., Bandettini, P. A., Hammeke, T. A., Yetkin, F. Z., Jesmanowicz, A., Lisk, L. M., Morris, G. L., Mueller, W. M., & Estkowski, L. D. (1993). Functional magnetic resonance imaging of complex human movements. Neurology, 43, 2311–2318.

    Article  CAS  PubMed  Google Scholar 

  • Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4, 317–323.

    Article  CAS  PubMed  Google Scholar 

  • Salet, J. M., de Jong, J., & van Rijn, H. (2022). Still stuck with the stopwatch. Behavioral Neuroscience, 136, 453–466.

    Article  PubMed  Google Scholar 

  • Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45, 810–823.

    Article  PubMed  Google Scholar 

  • Samartsidis, P., Montagna, S., Nichols, T. E., & Johnson, T. D. (2017). The coordinate-based meta-analysis of neuroimaging data. Statistical Science, 32, 580–599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartze, M., Rothermich, K., & Kotz, S. A. (2012). Functional dissociation of pre-SMA and SMA-proper in temporal processing. NeuroImage, 60, 290–298.

    Article  PubMed  Google Scholar 

  • Teghil, A., Boccia, M., D’Antonio, F., Di Vita, A., de Lena, C., & Guariglia, C. (2019). Neural substrates of internally-based and externally-cued timing: An activation likelihood estimation (ALE) meta-analysis of fMRI studies. Neuroscience and Biobehavioral Reviews, 96, 197–209.

    Article  PubMed  Google Scholar 

  • Tench, C. R., Tanasescu, R., Constantinescu, C. S., Cottam, W. J., & Auer, D. P. (2020). Coordinate based meta-analysis of networks in neuroimaging studies. NeuroImage, 205, 116259.

    Article  CAS  PubMed  Google Scholar 

  • Tench, C. R., Tanasescu, R., Constantinescu, C. S., Auer, D. P., & Cottam, W. J. (2022). Easy to interpret coordinate based meta-analysis of neuroimaging studies: Analysis of brain coordinates (ABC). Journal of Neuroscience Methods, 372, 109556.

    Article  CAS  PubMed  Google Scholar 

  • Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage, 16, 765–780.

    Article  PubMed  Google Scholar 

  • Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Map**, 33, 1–13.

    Article  PubMed  Google Scholar 

  • Vatakis, A., Balcı, F., Luca, M. D., & Correa, Á. (2018). Timing and time perception: Procedures measures, and applications. BRILL. https://doi.org/10.1163/9789004280205

    Google Scholar 

  • Wager, T. D., Jonides, J., & Reading, S. (2004). Neuroimaging studies of shifting attention: A meta-analysis. NeuroImage, 22, 1679–1693.

    Article  PubMed  Google Scholar 

  • Wager, T. D., Lindquist, M. A., Nichols, T. E., Kober, H., & Van, S. J. X. (2009). Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage, 45, S210–S221.

    Article  PubMed  Google Scholar 

  • Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010a). The image of time: A voxel-wise meta-analysis. NeuroImage, 49, 1728–1740.

    Article  PubMed  Google Scholar 

  • Wiener, M., Turkeltaub, P. E., & Coslett, H. B. (2010b). Implicit timing activates the left inferior parietal cortex. Neuropsychologia, 48, 3967–3971.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiener, M., Matell, M. S., & Coslett, H. B. (2011). Multiple mechanisms for temporal processing. Frontiers in Integrative Neuroscience, 5, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittmann, M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews. Neuroscience, 14, 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van, E. D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wiener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wiener, M. (2024). Coordinate-Based Meta-Analyses of the Time Perception Network. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 1455. Springer, Cham. https://doi.org/10.1007/978-3-031-60183-5_12

Download citation

Publish with us

Policies and ethics

Navigation