Raw Material for Beer Manufacturing

  • Chapter
  • First Online:
Fruit Fortification of Craft Beer
  • 21 Accesses

Abstract

Malt, the principal brewing raw material, contains extractable components and enzymes. Barley is the main raw material used in making beer, second only to water. The process of malting involves cleaning grains, stee** them in water, allowing them to germinate, and kilning them. The morphology of the grain is crucial for malt quality, with characteristics like kernel shape, hectoliter weight, thousand kernel weight, and uniformity and plumpness. Hops, a perennial plant, contribute to beer brewing by providing bittering and aroma components. Around 97% of the world’s hop harvest is used, with various aromas attributed to hops. Dry-hop**, a popular method, has decreased bitterness in recent years. Beer production involves alcoholic fermentation and maturation, involving various scientific disciplines. Different types have unique characteristics, with Saccharomyces yeasts playing a crucial role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 94.15
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 84.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agu, R. C. (2002). A comparison of maize, sorghum and barley as brewing adjuncts. Journal of the Institute of Brewing, 108(1), 19–22.

    Article  CAS  Google Scholar 

  • Agu, R. C., & Palmer, G. H. (1998). A reassessment of sorghum for lager-beer brewing. Bioresource Technology, 66(3), 253–261.

    Article  CAS  Google Scholar 

  • Arinze, E. A., Sokhansanj, S., Schoenau, G. J., & Sumner, A. K. (1994). Control strategies for low temperature in-bin drying of barley for feed and malt. Journal of Agricultural Engineering Research, 58(2–3), 73–88.

    Article  Google Scholar 

  • Armstrong, B., Weiss, M., Grieg, R., & Aldred, G. (2002). Using digital image analysis to accurately determine the thousand kernel weight of randomly distributed barley, malt and wheat samples. In Cereal proceedings (pp. 115–118).

    Google Scholar 

  • Annemüller, G., & Manger, H. J. (2013). Processing of various adjuncts in beer production: raw grain adjuncts-sugars and sugar syrups-malt substitutes. VLB Berlin.

    Google Scholar 

  • Anonymous. (2012). Progress report of All India coordinated wheatand barley improvement project 2011–12. Vol., VI. Karnal, India:Barley Network. Directorate of Wheat Research.

    Google Scholar 

  • ASBC. (2009). ASBC Methods of Analysis.

    Google Scholar 

  • Baca, E. (2001). The role of unmalted adjuncts in the creation of sensory characteristics of beer. In Proceedings of the school fermentation technology (pp. 113–126).

    Google Scholar 

  • Balakireva, A. V., & Zamyatnin, A. A., Jr. (2016). Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients, 8(10), 644.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bamforth, C. W., & Barclay, A. H. P. (1993). Malting technology and the uses of malt. In Barley: Chemistry and Technology (pp. 297–354).

    Google Scholar 

  • Bamforth, C. W., & Kanauchi, M. (2001). A simple model for the cell wall of the starchy endosperm in barley. Journal of the Institute of Brewing, 107(4), 235–240.

    Article  CAS  Google Scholar 

  • Basso, R. F., Alcarde, A. R., & Portugal, C. B. (2016). Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Research International, 86, 112–120.

    Article  CAS  Google Scholar 

  • Benešová, K., Běláková, S., Mikulíková, R., & Svoboda, Z. (2018). Determination of proteolytic enzyme activity during malting. Kvasny Prumysl, 64(6), 318–322.

    Article  Google Scholar 

  • Bera, S., Sabikhi, L., & Singh, A. K. (2018). Assessment of malting characteristics of different Indian barley cultivars. Journal of Food Science and Technology, 55, 704–711.

    Article  CAS  PubMed  Google Scholar 

  • Betts, N. S., Dockter, C., Berkowitz, O., Collins, H. M., Hooi, M., Lu, Q., et al. (2020). Transcriptional and biochemical analyses of gibberellin expression and content in germinated barley grain. Journal of Experimental Botany, 71(6), 1870–1884.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, C. S., Blake, D. E., Ellis, P. R., & Schofield, J. D. (1996). Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. Journal of Cereal Science, 24(2), 151–160.

    Article  CAS  Google Scholar 

  • Brickell, C. D., Alexander, C., David, J. C., Hetterscheid, W. L. A., Leslie, A..C., Malécot, V., & **aobai, J. (2009). International code of nomenclature for cultivated plants. [Scripta Horticulturae 10].

    Google Scholar 

  • Briggs, D. E. (1998). Malts and malting. Springer.

    Google Scholar 

  • Briggs, D. E., Hough, J. S., Stevens, R. & Young. T. W. (1981). Malting and Brewing Science: Malt and Sweet Wort. 2nd ed. Vol. 1. London: Chapman & Hall.

    Google Scholar 

  • Briggs, D. E., Boulton, C. A., Brookers, P. A., & Stevens, R. (2004). Native African beer. In: Brewing: Science and Practice; Woodhead Publishing Ltd: Cambridge, 589–605.

    Google Scholar 

  • Burger, W. C., & LaBerge, D. E. (1985). Malting and brewing quality. Barley, 26, 367–401.

    Google Scholar 

  • Cenci, I. D. O., Guimarães, B. P., Amabile, R. F., & Ghesti, G. F. (2020). Comparison between barley malt protein quantification methods. Food Science and Technology, 41, 213–217.

    Article  Google Scholar 

  • Chen, H. M., Ford, C., & Reilly, P. J. (1994). Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Biochemical Journal, 301(1), 275–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, S. E., Muslin, E. H., & Henson, C. A. (2004). Effect of adding and removing N-glycosylation recognition sites on the thermostability of barley α-glucosidase. Protein Engineering, Design & Selection, 17(3), 245–249.

    Article  CAS  Google Scholar 

  • Clark, S. E., Hayes, P. M., & Henson, C. A. (2005). Characterization of barley tissue-ubiquitous β-amylase2 and effects of the single nucleotide polymorphisms on the enzyme’s thermostability. Crop Science, 45(5), 1868–1876.

    Article  CAS  Google Scholar 

  • Cu, S. T., March, T. J., Stewart, S., Degner, S., Coventry, S., Box, A., et al. (2016). Genetic analysis of grain and malt quality in an elite barley population. Molecular Breeding, 36, 1–16.

    Article  CAS  Google Scholar 

  • de Carvalho, G. R., Polachini, T. C., Darros-Barbosa, R., Bon, J., & Telis-Romero, J. (2018). Effect of intermittent high-intensity sonication and temperature on barley stee** for malt production. Journal of Cereal Science, 82, 138–145.

    Article  CAS  Google Scholar 

  • De Schepper, C. F., Michiels, P., Langenaeken, N. A., & Courtin, C. M. (2020). Accurate quantification of small and large starch granules in barley and malt. Carbohydrate Polymers, 227, 115329.

    Article  PubMed  Google Scholar 

  • Deme, G. D., Asfaw, B. T., & Gari, M. T. (2020). Evaluation of malting potential of different barley varieties. Journal of Water Pollution & Purification Research, 6(3), 24–35.

    Google Scholar 

  • Domin, M., Kluza, F., Góral, D., Nazarewicz, S., Kozłowicz, K., Szmigielski, M., & Ślaska-Grzywna, B. (2019). Germination energy and capacity of maize seeds following low-temperature short storage. Sustainable Forestry, 12(1), 46.

    Google Scholar 

  • Douglas, P. E., & Flannigan, B. (1988). A microbiological evaluation of barley malt production. Journal of the Institute of Brewing, 94(2), 85–88.

    Article  Google Scholar 

  • Du, J., Dong, J., Du, S., Zhang, K., Yu, J., Hu, S., & Yin, H. (2020). Understanding thermostability factors of barley limit dextrinase by molecular dynamics simulations. Frontiers in Molecular Biosciences, 7, 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffus, C. M., & Cochrane, M. P. (1993). Barley: chemistry and technology.

    Google Scholar 

  • Duke, S. H., & Henson, C. A. (2009). A comparison of barley malt amylolytic enzyme activities as indicators of malt sugar concentrations. Journal of the American Society of Brewing Chemists, 67(2), 99–111.

    Article  CAS  Google Scholar 

  • Egi, A., Speers, R. A., & Paulson, A. T. (2004). The physical behavior of arabinoxylans in model brewing solutions. Technical Quarterly-Master Brewers Association of the Americas, 41(3), 268–276.

    Google Scholar 

  • Evans, D. E., & Hejgaard, J. (1999). The impact of malt derived proteins on beer foam quality. Part I. The effect of germination and kilning on the level of protein Z4, protein Z7 and LTP1. Journal of the Institute of Brewing, 105(3), 159–170.

    Article  CAS  Google Scholar 

  • Fang, Y., Zhang, X., & Xue, D. (2019). Genetic analysis and molecular breeding applications of malting quality QTLs in barley. Frontiers in Genetics, 10, 352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fincher, G. B. (2011). Biochemistry, physiology, and genetics of endosperm mobilization in germinated barley grain. Barley: Production, improvement, and uses (pp. 449–477). Wiley-Blackwell Publishing Ltd.

    Google Scholar 

  • Fincher, G. B., & Stone, B. A. (1986). Cell walls and their components in cereal grain technology. Advances in Cereal Science and Technology, 8, 207–295.

    CAS  Google Scholar 

  • Fox, G. P. (2009). Chemical composition in barley grains and malt quality. In Genetics and improvement of barley malt quality (pp. 63–98). Springer.

    Chapter  Google Scholar 

  • Fox, G. P., Panozzo, J. F., Li, C. D., Lance, R. C. M., Inkerman, P. A., & Henry, R. J. (2003). Molecular basis of barley quality. Australian Journal of Agricultural Research, 54(12), 1081–1101.

    Article  CAS  Google Scholar 

  • Fox, G. P., Kelly, A., Poulsen, D., Inkerman, A., & Henry, R. (2006). Selecting for increased barley grain size. Journal of Cereal Science, 43(2), 198–208.

    Article  Google Scholar 

  • Fox, G. P., Nguyen, L., Bowman, J., Poulsen, D., Inkerman, A., & Henry, R. J. (2007). Relationship between hardness genes and quality in barley (Hordeum vulgare). Journal of the Institute of Brewing, 113(1), 87–95.

    Article  CAS  Google Scholar 

  • Galano, T., Fininsa, C., & Bultosa, G. (2008). Effects of net blotch (Pyrenophora teres) on malt barley yield and grain quality at Holeta. Central Ethiopia. East African Journal of Sciences, 2(2), 150–158.

    Google Scholar 

  • George, R., & Georrge, J. J. (2020, April). Thermostable alpha-amylase and its activity, stability and industrial relevance studies. In Proceedings of the National Conference on Innovations in Biological Sciences (NCIBS).

    Google Scholar 

  • Georg-Kraemer, J. E., Caierão, E., Minella, E., Barbosa-Neto, J. F., & Cavalli, S. S. (2004). The (1–3, 1–4)-β-Glucanases in malting barley: enzyme survival and genetic and environmental effects. Journal of the Institute of Brewing, 110(4), 303–308.

    Article  CAS  Google Scholar 

  • Gómez-Cadenas, A., Zentella, R., Walker-Simmons, M. K., & Ho, T. H. D. (2001). Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell, 13(3), 667–679.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goode, D. L., & Arendt, E. K. (2006). Development in the supply of adjunct materials for brewing. In C. W. Bamforth (Ed.), Brewing (pp. 30–57). Woodhead Publishing Limited.

    Chapter  Google Scholar 

  • Grime, K. H., & Briggs, D. E. (1996). The release of bound β-amylase by macromolecules. Journal of the Institute of Brewing, 102(4), 261–270.

    Article  CAS  Google Scholar 

  • Guerra, N. P., Torrado-Agrasar, A., López-Macías, C., Martinez-Carballo, E., García-Falcón, S., Simal-Gándara, J., & Pastrana-Castro, L. M. (2009). Use of amylolytic enzymes in brewing. In Beer in health and disease prevention (pp. 113–126). Academic.

    Chapter  Google Scholar 

  • Guido, L. F., & Moreira, M. M. (2014). 3 malting. In Engineering aspects of cereal and cereal-based products.

    Google Scholar 

  • Habschied, K., Živković, A., Krstanović, V., & Mastanjević, K. (2020). Functional beer—A review on possibilities. Beverages, 6(3), 51.

    Article  CAS  Google Scholar 

  • Harasymow, S., Tarr, A. W., Diepeveen, D., Roumeliotis, S., Tansing, P., Black, C. K., et al. (2003). Standardization of a small-scale hot water extract method for application in barley breeding programs. In Barley technical/cereal chemistry 2003: A joint meeting for the 11th Australian Barley symposium and the 53rd Australian Cereal Chemistry Conference.

    Google Scholar 

  • Haseleu, G., Intelmann, D., & Hofmann, T. (2009). Identification and RP-HPLC-ESI-MS/MS quantitation of bitter-tasting β-acid transformation products in beer. Journal of agricultural and food chemistry, 57(16), 7480–7489.

    Google Scholar 

  • Hanke, S., Herrmann, M., Rückerl, J., Schönberger, C., & Back, W. (2008). Hop volatile compounds (Part II): Transfer rates of hop compounds from hop pellets to wort and beer. Brew. Sci, 61, 140–147.

    Google Scholar 

  • He, Y., Cao, Y., Chen, S., Ma, C., Zhang, D., & Li, H. (2018). Analysis of flavour compounds in beer with extruded corn starch as an adjunct. Journal of the Institute of Brewing, 124(1), 9–15.

    Article  CAS  Google Scholar 

  • Hellevang, K. J. (1994). Grain drying. North Dakota State University.

    Google Scholar 

  • Hense, W., Kunz, T., Wietstock, P., & Methner, F. J. (2010). Increase of flavour stability by optimised hop management during wort boil. In Poster at the 9th international symposium trends in brewing, Ghent, 1316 April, 2010.

    Google Scholar 

  • Hieronymus, S. (2016). Brewing Local: American-Grown Beer. Brewers Publications.

    Google Scholar 

  • Hill, A. E., & Stewart, G. G. (2019). Free amino nitrogen in brewing. Fermentation, 5(1), 22.

    Article  CAS  Google Scholar 

  • Hioe, M., Goldsmith, M., Lentini, A., Rogers, P., Jontef, M., Nyaguy, C., Cozens, J., & Frederiksen, A. (2010). An enzymatic and hop solution to avoid oxidation of wort and improve beer flavour stability. Oral presentation at 31st convention, IBD Asia Pacific, Gold Coast Queensland, Australia, 1419 March, 2010.

    Google Scholar 

  • Holopainen, U. R., Wilhelmson, A., Salmenkallio-Marttila, M., Peltonen-Sainio, P., Rajala, A., Reinikainen, P., et al. (2005). Endosperm structure affects the malting quality of barley (Hordeum vulgare L.). Journal of Agricultural and Food Chemistry, 53(18), 7279–7287.

    Article  CAS  PubMed  Google Scholar 

  • Holtekjølen, A. K., Uhlen, A. K., Bråthen, E., Sahlstrøm, S., & Knutsen, S. H. (2006). Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chemistry, 94(3), 348–358.

    Article  Google Scholar 

  • Howard, K. A., Gayler, K. R., Eagles, H. A., & Halloran, G. M. (1996). The relationship between D hordein and malting quality in barley. Journal of Cereal Science, 24(1), 47–54.

    Article  CAS  Google Scholar 

  • Howe, S. (2020). Raw materials. In The craft brewing handbook (pp. 1–46). Woodhead Publishing.

    Google Scholar 

  • Hrmova, M., & Fincher, G. B. (1997). Barley β-D-glucan exohydrolases. Substrate specificity and kinetic properties. Carbohydrate Research, 305(2), 209–221.

    Article  CAS  Google Scholar 

  • Hughes, P. S., & Simpson, W. J. (1996). Bitterness of congeners and stereoisomers of hop-derived bitter acids found in beer. Journal of the American Society of Brewing Chemists, 54(4), 234–237.

    Google Scholar 

  • Humberstone, F. J., & Briggs, D. E. (2000a). Extraction and assay of ferulic acid esterase from malted barley. Journal of the Institute of Brewing, 106(1), 21–30.

    Article  CAS  Google Scholar 

  • Humberstone, F. J., & Briggs, D. E. (2000b). Extraction and assay of acetic acid esterase from malted barley. Journal of the Institute of Brewing, 106(1), 31–38.

    Article  CAS  Google Scholar 

  • Jamar, C., du Jardin, P., & Fauconnier, M. L. (2011). Cell wall polysaccharides hydrolysis of malting barley (Hordeum vulgare L.): a review. Biotechnologie, Agronomie, Société et Environnement, 15(2), 301.

    Google Scholar 

  • Jégou, S., Douliez, J. P., Mollé, D., Boivin, P., & Marion, D. (2001). Evidence of the glycation and denaturation of LTP1 during the malting and brewing process. Journal of Agricultural and Food Chemistry, 49(10), 4942–4949.

    Article  PubMed  Google Scholar 

  • **, Y. L., Speers, R. A., Paulson, A. T., & Stewart, R. J. (2004). Barley beta-glucans and their degradation during malting and brewing. Technical Quarterly - Master Brewers Association of the Americas, 41(3), 231–240.

    CAS  Google Scholar 

  • Kano, Y., Kunitake, N., Karakawa, T., Taniguchi, H., & Nakamura, M. (1981). Structural changes in starch molecules during the malting of barley. Agricultural and Biological Chemistry, 45(9), 1969–1975.

    Google Scholar 

  • Kishimoto, T., Teramoto, S., Fujita, A., & Yamada, O. (2021). Principal component analysis of hop-derived odorants identified by stir bar sorptive extraction method. Journal of the American Society of Brewing Chemists, 79(3), 272–280.

    Article  CAS  Google Scholar 

  • Kok, Y. J., Ye, L., Muller, J., Ow, D. S. W., & Bi, X. (2019). Brewing with malted barley or raw barley: What makes the difference in the processes? Applied Microbiology and Biotechnology, 103, 1059–1067.

    Article  CAS  PubMed  Google Scholar 

  • Kreisz, S. (2009). Malting. In Handbook of brewing: Processes, technology, markets (pp. 147–164). Wiley-VCH Verlag GmbH & Co.

    Chapter  Google Scholar 

  • Kumar, V., Khippal, A., Singh, J., Selvakumar, R., Malik, R., Kumar, D., et al. (2014). Barley research in India: Retrospect & prospects. Journal of Wheat Research, 6(1), 1–20.

    Google Scholar 

  • Kunze, W. (2004). Brewing malting (pp. 18–152). VLB.

    Google Scholar 

  • Ma, Z., Zhang, L., Liu, J., Dong, J., Yin, H., Yu, J., et al. (2020). Effect of hydrogen peroxide and ozone treatment on improving the malting quality. Journal of Cereal Science, 91, 102882.

    Article  CAS  Google Scholar 

  • MacGregor, E. A. (2004). The proteinaceous inhibitor of limit dextrinase in barley and malt. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1696(2), 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Mallett, J. (2014). Malt: A practical guide from field to brewhouse (Vol. 4). Brewers Publications.

    Google Scholar 

  • Mastanjević, K., Španić, V., Horvat, D., Mastanjević, K., Šarkanj, B., Krstanović, V., & Šantek, B. (2018). Establishing the impact of Fusarium culmorum infection and fungicide treatment on wheat malt quality. Journal of Food Processing & Preservation, 42(10), e13714.

    Article  Google Scholar 

  • McCleary, B. V., & Codd, R. (1991). Measurement of (1 → 3),(1 → 4)‐β‐D‐glucan in barley and oats: a streamlined enzymic procedure. Journal of the Science of Food and Agriculture, 55(2), 303–312.

    Article  CAS  Google Scholar 

  • Mehra, R., Kumar, H., Kumar, N., & Kaushik, R. (2020). Red rice conjugatedwith barley and rhododendron extracts for new variant of beer. Journal of Food Science and Technology, 57(11), 4152–4159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel, M., Kopecká, J., Meier-Dörnberg, T., Zarnkow, M., Jacob, F., & Hutzler, M. (2016). Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast, 33(4), 129–144.

    Article  CAS  PubMed  Google Scholar 

  • Mikyška, A., Hrabák, M., Hašková, D., & Šrogl, J. (2002). The role of malt and hop polyphenols in beer quality, flavour and haze stability. Journal of the Institute of Brewing, 108, 78–85.

    Article  Google Scholar 

  • Misra, N. N., Yadav, B., Roopesh, M. S., & Jo, C. (2019). Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106–120.

    Article  CAS  PubMed  Google Scholar 

  • Muslin, E. H., Kanikula, A. M., Clark, S. E., & Henson, C. A. (2000). Overexpression, purification, and characterization of a barley α-glucosidase secreted by Pichia pastoris. Protein Expression and Purification, 18(1), 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Naested, H., Kramhøft, B., Lok, F., Bojsen, K., Yu, S., & Svensson, B. (2006). Production of enzymatically active recombinant full-length barley high pI α-glucosidase of glycoside family 31 by high cell-density fermentation of Pichia pastoris and affinity purification. Protein Expression and Purification, 46(1), 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Nair, S. B., Jyothi, A. N., Sajeev, M. S., & Misra, R. (2011). Rheological, mechanical and moisture sorption characteristics of cassava starch-konjac glucomannan blend films. Starch-Stärke, 63(11), 728–739.

    Article  CAS  Google Scholar 

  • Narzis, L., & Back, W. (2012). The beer brewery: Volume 1 - the technology of malt preparation (Vol. 1). John Wiley & Sons.

    Google Scholar 

  • Nishantha, M. D. L. C., Zhao, X., Jeewani, D. C., Bian, J., Nie, X., & Weining, S. (2018). Direct comparison of β-glucan content in wild and cultivated barley. International Journal of Food Properties, 21(1), 2218–2228.

    Article  CAS  Google Scholar 

  • Niu, C., Han, Y., Wang, J., Zheng, F., Liu, C., Li, Y., & Li, Q. (2018). Malt derived proteins: Effect of protein Z on beer foam stability. Food Bioscience, 25, 21–27.

    Google Scholar 

  • Oser, H. H. (2015). Producing quality barley for the malting industry. The University of Nebraska-Lincoln.

    Google Scholar 

  • Palmer, G. H. (1989). Cereals in malting and brewing. In G. H. Palmer (Ed.), Cereal science and technology (pp. 61–242). Aberdeen University Press.

    Google Scholar 

  • Palmer, G. H., & Harvey, A. E. (1977). The influence of endosperm structure on the behaviour of barleys in the sedimentation test. Journal of the Institute of Brewing, 83(5), 295–299.

    Article  CAS  Google Scholar 

  • Palmer, S. M., Winham, D. M., Oberhauser, A. M., & Litchfield, R. E. (2018). Socio-ecological barriers to dry grain pulse consumption among low-income women: A mixed methods approach. Nutrients, 10(8), 1108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pater, A., Zdaniewicz, M., Satora, P., Khachatryan, G., & Oszczęda, Z. (2020). Application of water treated with low-temperature low-pressure glow plasma for quality improvement of barley and malt. Biomolecules & Therapeutics, 10(2), 267.

    Article  CAS  Google Scholar 

  • Posta, V., Vejražka, K., Faměra, O., & Hrčka, M. (2007). Relationship between grain hardness and malting quality of barley (Hordeum vulgare L.). Journal of the Institute of Brewing, 113(1), 80–86.

    Google Scholar 

  • Poutanen, K. S. (2020). Cereal raw material pretreatment. In Breakfast cereals and how they are made (pp. 97–107). AACC International Press.

    Chapter  Google Scholar 

  • Sammartino, M. (2015). Specialty malt: A summary. Technical Quarterly - Master Brewers Association of the Americas, 52, 191–194.

    Google Scholar 

  • Schmitt, M. R., & Wise, M. L. (2009). Barley and oat β-glucan content measured by calcofluor fluorescence in a microplate assay. Cereal Chemistry, 86(2), 187–190.

    Article  CAS  Google Scholar 

  • Schwarz, P., & Li, Y. (2011). Malting and brewing uses of barley. Barley: Production, improvement, and uses, 478–521.

    Google Scholar 

  • Sheng, L., Li, P., Wu, H., Liu, Y., Han, K. E., Gouda, M., & **, Y. (2018). Tapioca starch-pullulan interaction during gelation and retrogradation. LWT – Food Science and Technology, 96, 432–438.

    Article  CAS  Google Scholar 

  • Shewry, P. R., & Tatham, A. S. (1990). The prolamin storage proteins of cereal seeds: structure and evolution. Biochemical Journal, 267(1), 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry, P. R., & Ullrich, S. E. (2014). Barley: Chemistry and technology. Elsevier.

    Google Scholar 

  • Shintassova, S. M., Baigazieva, G. I., Kiseleva, T. F., Uvakasova, G. T., & Askarbekov, E. B. (2019). Improving the quality of brewing malt with the use of ion-ozone explosive cavitation. EurAsian Journal of BioSciences, 13(1), 277–286.

    CAS  Google Scholar 

  • Shu, X., & Rasmussen, S. K. (2014). Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Frontiers in Plant Science, 5, 197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu, K., Meng, Y. J., Shuai, H. W., Liu, W. G., Du, J. B., Liu, J., & Yang, W. Y. (2015). Dormancy and germination: How does the crop seed decide? Plant Biology, 17(6), 1104–1112.

    Article  CAS  PubMed  Google Scholar 

  • Sissons, M. J., & MacGregor, A. W. (1994). Hydrolysis of barley starch granules by α-glucosidases from malt. Journal of Cereal Science, 19(2), 161–169.

    Article  CAS  Google Scholar 

  • Steiner, E., Gastl, M., & Becker, T. (2011). Protein changes during malting and brewing with focus on haze and foam formation: A review. European Food Research and Technology, 232, 191–204.

    Article  CAS  Google Scholar 

  • Stenholm, K., & Home, S. (1999). A new approach to limit dextrinase and its role in mashing. Journal of the Institute of Brewing, 105(4), 205–210.

    Article  CAS  Google Scholar 

  • Stewart, G. G. (2017). Adjuncts. In Handbook of brewing (pp. 129–144). CRC Press.

    Chapter  Google Scholar 

  • Sun, Z., & Henson, C. A. (1990). Degradation of native starch granules by barley α-glucosidases. Plant Physiology, 94(1), 320–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanston, J. S., Wilhelmson, A., Ritala, A., & Gibson, B. R. (2014). Malting, brewing, and distilling. In Barley: Chemistry and technology (pp. 193–222). Elsevier.

    Chapter  Google Scholar 

  • Taylor, J. R., Schober, T. J., & Bean, S. R. (2006). Novel food and non-food uses for sorghum and millets. Journal of cereal science, 44(3), 252–271.

    Google Scholar 

  • Verma, B., Hucl, P., & Chibbar, R. N. (2008). Phenolic content and antioxidant properties of bran in 51 wheat cultivars. Cereal Chemistry, 85(4), 544–549.

    Article  CAS  Google Scholar 

  • Verma, R., Sarkar, B., Gupta, R., & Varma, A. (2008a). Breeding barley for malting quality improvement in India. Cereal Research Communications, 36(1), 135–145.

    Article  Google Scholar 

  • Vinje, M. A., Willis, D. K., Duke, S. H., & Henson, C. A. (2011). Differential expression of two β-amylase genes (Bmy1 and Bmy2) in develo** and mature barley grain. Planta, 233, 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  • von Bothmer, R., & Jacobsen, N. (1985). Origin, taxonomy, and related species. Barley, 26, 19–56.

    Google Scholar 

  • Walker, C., Freeman, G., Jugdaohsingh, R., & Powell, J. J. (2009). Silicon in beer: origin and concentration. In Beer in Health and Disease Prevention (pp. 367–371). Academic Press.

    Google Scholar 

  • Walker, C., Dickie, K., Biawa, J. P., Ueda, T., & Muller, R. E. (2001). Prediction of extract potential in new barley varieties by measuring cell‐wall breakdown. Journal of the Institute of Brewing, 107(3), 167–174.

    Google Scholar 

  • Walker-Smith, D. J., & Payne, J. W. (1984). Characteristics of the active transport of peptides and amino acids by germinating barley embryos. Planta, 162, 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Wenwen, Y., Tao, K., Gidley, M. J., Fox, G. P., & Gilbert, R. G. (2019). Molecular brewing: Molecular structural effects involved in barley malting and mashing. Carbohydrate Polymers, 206, 583–592.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L., Yen, I. E. H., Xu, F., Ravikumar, P., & Witbrock, M. (2018). D2ke: From distance to kernel and embedding. ar**v preprint ar**v:1802.04956.

    Google Scholar 

  • Zhang, N., & Jones, B. L. (1995). Characterization of germinated barley endoproteolytic enzymes by two-dimensional gel electrophoresis. Journal of Cereal Science, 21(2), 145–153.

    Article  CAS  Google Scholar 

  • Zhang, T., Zhang, H., Yang, Z., Wang, Y., & Li, H. (2019). Black rice addition prompted the beer quality by the extrusion as pretreatment. Food Science & Nutrition, 7(11), 3664–3674.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nehra, M., Grover, N., Sandhu, K.S., Thory, R. (2024). Raw Material for Beer Manufacturing. In: Fruit Fortification of Craft Beer. Springer, Cham. https://doi.org/10.1007/978-3-031-60175-0_3

Download citation

Publish with us

Policies and ethics

Navigation