Gene-Based Management of Alzheimer’s Disease: Role of Coumarins of Ferulago Genus

  • Chapter
  • First Online:
Medicinal and Aromatic Plants

Abstract

The genus Ferulago, from the Apiaceae (Umbelliferae) family, comprised perennial herbs that have long been used as medicinal plants in different countries. Phytochemical and biological investigations of this genus revealed that their neuroprotective activities are mediated by a wide variety of compounds, especially coumarins. In this chapter, we introduced the coumarins from various species of the Ferulago genus, as well as different pathological pathways, and major potential genes linked to Alzheimer’s disease (AD). Moreover, the possible effectiveness of these coumarins on the mentioned proteins and genes was investigated. Amyloid-β (Aβ) and secretase enzymes, tau protein, cholinergic and glutaminergic receptors, and the immune system (microglia) were identified as major key factors in AD management. At the molecular level, bergamottin, imperatorin, and oxypeucedanin could affect the BACE1 and show β-secretase inhibitory activities. Moreover, osthole, a prenylated coumarin, can improve memory function by various mechanisms, including inhibiting tau protein phosphorylation, affecting mRNA expression of BACE1, and reducing Aβ formation. According to the effectiveness of reported coumarins from Ferulago species on AD-related proteins and genes, these species and their coumarins could be considered as novel therapeutic options for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, S., Khan, H., Aschner, M., Mirzae, H., Küpeli Akkol, E., & Capasso, R. (2020). Anticancer potential of furanocoumarins: Mechanistic and therapeutic aspects. International Journal of Molecular Sciences, 21(16), 5622.

    Article  CAS  Google Scholar 

  • Albayrak, G., Demir, S., Koyu, H., & Baykan, S. (2022). Anticholinesterase compounds from endemic Prangos uechtritzii. Chemistry & Biodiversity, 19(11), e202200557.

    Article  CAS  Google Scholar 

  • Alhazmi, H. A., & Albratty, M. (2022). An update on the novel and approved drugs for Alzheimer disease. Saudi Pharmaceutical Journal.

    Google Scholar 

  • Ali, M. Y., Seong, S. H., Reddy, M. R., Seo, S. Y., Choi, J. S., & Jung, H. A. (2017). Kinetics and molecular docking studies of 6-formyl umbelliferone isolated from Angelica decursiva as an inhibitor of cholinesterase and BACE1. Molecules, 22(10), 1604.

    Article  Google Scholar 

  • Andrews, S. J., Fulton-Howard, B., & Goate, A. (2020). Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. The Lancet Neurology, 19(4), 326–335.

    Article  Google Scholar 

  • Badalamenti, N., Ilardi, V., Rosselli, S., & Bruno, M. (2021). The ethnobotany, phytochemistry and biological properties of genus Ferulago—A review. Journal of Ethnopharmacology, 274, 114050.

    Article  CAS  Google Scholar 

  • Baek, S. C., Kang, M.-G., Park, J.-E., Lee, J. P., Lee, H., Ryu, H. W., Park, C. M., Park, D., Cho, M.-L., & Oh, S.-R. (2019). Osthenol, a prenylated coumarin, as a monoamine oxidase A inhibitor with high selectivity. Bioorganic & Medicinal Chemistry Letters, 29(6), 839–843.

    Article  CAS  Google Scholar 

  • Basile, A., Sorbo, S., Spadaro, V., Bruno, M., Maggio, A., Faraone, N., & Rosselli, S. (2009). Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules, 14(3), 939–952.

    Article  CAS  Google Scholar 

  • Bellenguez, C., Grenier-Boley, B., & Lambert, J.-C. (2020). Genetics of Alzheimer’s disease: Where we are, and where we are going. Current Opinion in Neurobiology, 61, 40–48.

    Article  CAS  Google Scholar 

  • Bellenguez, C., Küçükali, F., Jansen, I. E., Kleineidam, L., Moreno-Grau, S., Amin, N., Naj, A. C., Campos-Martin, R., Grenier-Boley, B., & Andrade, V. (2022). New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nature Genetics, 54(4), 412–436.

    Article  CAS  Google Scholar 

  • Bettens, K., Sleegers, K., & Van Broeckhoven, C. (2013). Genetic insights in Alzheimer’s disease. The Lancet Neurology, 12(1), 92–104.

    Article  CAS  Google Scholar 

  • Bourgaud, F., Hehn, A., Larbat, R., Doerper, S., Gontier, E., Kellner, S., & Matern, U. (2006). Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes. Phytochemistry Reviews, 5, 293–308.

    Article  CAS  Google Scholar 

  • Budzynska, B., Boguszewska-Czubara, A., Kruk-Slomka, M., Skalicka-Wozniak, K., Michalak, A., Musik, I., Biala, G., & Glowniak, K. (2013). Effects of imperatorin on nicotine-induced anxiety- and memory-related responses and oxidative stress in mice. Physiology & Behavior, 122, 46–55.

    Article  CAS  Google Scholar 

  • Calabrò, M., Rinaldi, C., Santoro, G., & Crisafulli, C. (2021). The biological pathways of Alzheimer disease: A review. AIMS Neuroscience, 8(1), 86.

    Article  Google Scholar 

  • Choi, G.-Y., Kim, H.-B., Cho, J.-M., Sreelatha, I., Lee, I.-S., Kweon, H.-S., Sul, S., Kim, S. A., Maeng, S., & Park, J.-H. (2023). Umbelliferone ameliorates memory impairment and enhances hippocampal synaptic plasticity in scopolamine-induced Rat model. Nutrients, 15(10), 2351.

    Article  CAS  Google Scholar 

  • Çiçek Kaya, A., Özbek, H., Yuca, H., Yılmaz, G., Bingöl, Z., Kazaz, C., Gülçin, İ., & Güvenalp, Z. (2023). Phytochemical content and enzyme inhibitory effect of Heptaptera triquetra (Vent.) Tutin fruit against acetylcholinesterase and carbonic anhydrase I and II isoenzymes. Chemical Papers, 1–9.

    Google Scholar 

  • Dall’Acqua, S., Maggi, F., Minesso, P., Salvagno, M., Papa, F., Vittori, S., & Innocenti, G. (2010). Identification of non-alkaloid acetylcholinesterase inhibitors from Ferulago campestris (Besser) Grecescu (Apiaceae). Fitoterapia, 81(8), 1208–1212.

    Article  Google Scholar 

  • Epifano, F., Molinaro, G., Genovese, S., Ngomba, R. T., Nicoletti, F., & Curini, M. (2008). Neuroprotective effect of prenyloxycoumarins from edible vegetables. Neuroscience Letters, 443(2), 57–60.

    Article  CAS  Google Scholar 

  • Fontana, I. C., Kumar, A., & Nordberg, A. (2023). The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nature Reviews Neurology, 19(5), 278–288.

    Article  Google Scholar 

  • Gao, C., Shen, X., Tan, Y., & Chen, S. (2022). Pathogenesis, therapeutic strategies and biomarker development based on “omics” analysis related to microglia in Alzheimer’s disease. Journal of Neuroinflammation, 19(1), 1–23.

    Article  Google Scholar 

  • Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S. H., Villemagne, V. L., Aisen, P., Vendruscolo, M., & Iwatsubo, T. (2021a). The amyloid-β pathway in Alzheimer’s disease. Molecular Psychiatry, 26(10), 5481–5503.

    Article  CAS  Google Scholar 

  • Hampel, H., Mesulam, M.-M., Cuello, A. C., Farlow, M. R., Giacobini, E., Grossberg, G. T., Khachaturian, A. S., Vergallo, A., Cavedo, E., & Snyder, P. J. (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 141(7), 1917–1933.

    Article  Google Scholar 

  • Hampel, H., Vassar, R., De Strooper, B., Hardy, J., Willem, M., Singh, N., Zhou, J., Yan, R., Vanmechelen, E., & De Vos, A. (2021b). The β-secretase BACE1 in Alzheimer’s disease. Biological Psychiatry, 89(8), 745–756.

    Article  CAS  Google Scholar 

  • Hung, W.-L., Suh, J. H., & Wang, Y. (2017). Chemistry and health effects of furanocoumarins in grapefruit. Journal of Food and Drug Analysis, 25(1), 71–83.

    Article  CAS  Google Scholar 

  • Javaid, S. F., Giebel, C., Khan, M. A., & Hashim, M. J. (2021). Epidemiology of Alzheimer’s disease and other dementias: Rising global burden and forecasted trends. F1000Research, 10, 425.

    Google Scholar 

  • Jiang, S., Li, Y., Zhang, C., Zhao, Y., Bu, G., Xu, H., & Zhang, Y.-W. (2014). M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neuroscience Bulletin, 30, 295–307.

    Article  CAS  Google Scholar 

  • Joghataee, S., Mohammad-zadeh, M., Amin, B., Jafari, F., Tondar, M., & Gholami, O. (2020). Auraptene has neuroprotective and memory enhancing effects in a rat model of Alzheimer’s disease. Neurology Asia, 25(3).

    Google Scholar 

  • Kang, S. Y., Lee, K. Y., Park, M. J., Kim, Y. C., Markelonis, G. J., Oh, T. H., & Kim, Y. C. (2003). Decursin from Angelica gigas mitigates amnesia induced by scopolamine in mice. Neurobiology of Learning and Memory, 79(1), 11–18.

    Article  CAS  Google Scholar 

  • Karakaya, S., Koca, M., Kılıc, C. S., & Coskun, M. (2018). Antioxidant and anticholinesterase activities of Ferulago syriaca Boiss. and F. isaurica Peșmen growing in Turkey. Medicinal Chemistry Research, 27, 1843–1850.

    Article  CAS  Google Scholar 

  • Kong, L. D., Tan, R. X., Woo, A. Y. H., & Cheng, C. H. K. (2001). Inhibition of rat brain monoamine oxidase activities by psoralen and isopsoralen: Implications for the treatment of affective disorders. Pharmacology & Toxicology, 88(2), 75–80.

    Article  CAS  Google Scholar 

  • Kontogiorgis, C., Detsi, A., & Hadjipavlou-Litina, D. (2012). Coumarin-based drugs: A patent review (2008–present). Expert Opinion on Therapeutic Patents, 22(4), 437–454.

    Article  CAS  Google Scholar 

  • Kowalczyk, J., Skalicka-Wozniak, K., Budzynska, B., El Sayed, N., Espargaró, A., & Sabate, R. (2022). Coumarin derivatives against amyloid-beta 40–42 peptide and protein. Current Issues in Pharmacy and Medical Sciences, 35(2), 67–74.

    Article  CAS  Google Scholar 

  • Kunkle, B. W., Schmidt, M., Klein, H.-U., Naj, A. C., Hamilton-Nelson, K. L., Larson, E. B., Evans, D. A., De Jager, P. L., Crane, P. K., & Buxbaum, J. D. (2021). Novel Alzheimer disease risk loci and pathways in African American individuals using the African genome resources panel: A meta-analysis. JAMA Neurology, 78(1), 102–113.

    Article  Google Scholar 

  • Küpeli Akkol, E., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E., & Capasso, R. (2020). Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 12(7), 1959.

    Article  Google Scholar 

  • Kurach, Ł, Kulczycka-Mamona, S., Kowalczyk, J., Skalicka-Woźniak, K., Boguszewska-Czubara, A., El Sayed, N., Osmani, M., Iwaniak, K., & Budzyńska, B. (2021). Mechanisms of the procognitive effects of xanthotoxin and umbelliferone on LPS-induced amnesia in mice. International Journal of Molecular Sciences, 22(4), 1779.

    Article  CAS  Google Scholar 

  • Lacy, A., & O’kennedy, R. (2004). Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Current Pharmaceutical Design, 10(30), 3797–3811.

    Article  CAS  Google Scholar 

  • Li, L., Li, W., Jung, S.-W., Lee, Y.-W., & Kim, Y.-H. (2011). Protective effects of decursin and decursinol angelate against amyloid β-protein-induced oxidative stress in the PC12 cell line: The role of Nrf2 and antioxidant enzymes. Bioscience, Biotechnology, and Biochemistry, 75(3), 434–442.

    Article  CAS  Google Scholar 

  • Liu, J., Chang, L., Song, Y., Li, H., & Wu, Y. (2019). The role of NMDA receptors in Alzheimer’s disease. Frontiers in Neuroscience, 13, 43.

    Article  CAS  Google Scholar 

  • Liu, J., Zuo, X., Huang, M., Fang, J., Li, W., Shi, Q., Wang, Q., & Liang, Y. (2023). Multifunctional Gomisin B enhances cognitive function in APP/PS1 transgenic mice by regulating Aβ clearance and neuronal apoptosis. Biomedicine & Pharmacotherapy, 166, 115423.

    Article  CAS  Google Scholar 

  • Liu, S.-L., Wang, C., Jiang, T., Tan, L., **ng, A., & Yu, J.-T. (2016). The role of Cdk5 in Alzheimer’s disease. Molecular Neurobiology, 53, 4328–4342.

    Article  CAS  Google Scholar 

  • Marumoto, S., & Miyazawa, M. (2010). β-Secretase inhibitory effects of furanocoumarins from the root of Angelica dahurica. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 24(4), 510–513.

    Article  CAS  Google Scholar 

  • Marumoto, S., & Miyazawa, M. (2012). Structure–activity relationships for naturally occurring coumarins as β-secretase inhibitor. Bioorganic & Medicinal Chemistry, 20(2), 784–788.

    Article  CAS  Google Scholar 

  • Mazimba, O. (2017). Umbelliferone: Sources, chemistry and bioactivities review. Bulletin of Faculty of Pharmacy, Cairo University, 55(2), 223–232.

    Article  Google Scholar 

  • Nandi, A., Counts, N., Chen, S., Seligman, B., Tortorice, D., Vigo, D., & Bloom, D. E. (2022). Global and regional projections of the economic burden of Alzheimer’s disease and related dementias from 2019 to 2050: A value of statistical life approach. EClinicalMedicine, 51.

    Google Scholar 

  • Ogunwa, T. H. (2019). Interaction studies of Angelica polymorpha and Beilschmiedia pulverulenta phytochemicals with acetylcholinesterase as anti-Alzheimer’s disease target. International Journal of Computational Biology and Drug Design, 12(1), 80–99.

    Article  Google Scholar 

  • Okuyama, S., Minami, S., Shimada, N., Makihata, N., Nakajima, M., & Furukawa, Y. (2013). Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice. European Journal of Pharmacology, 699(1–3), 118–123.

    Article  CAS  Google Scholar 

  • Okuyama, S., Nakashima, T., Nakamura, K., Shinoka, W., Kotani, M., Sawamoto, A., Nakajima, M., & Furukawa, Y. (2018). Inhibitory effects of auraptene and naringin on astroglial activation, tau hyperphosphorylation, and suppression of neurogenesis in the hippocampus of streptozotocin-induced hyperglycemic mice. Antioxidants, 7(8), 109.

    Article  Google Scholar 

  • Peng, X.-L., Hou, L., Xu, S.-H., Hua, Y., Zhou, S.-J., Zhang, Y., Zheng, Y.-P., Fu, Y.-H., Xu, Q., & Zhang, L.-S. (2014). Novel APP K724M mutation causes Chinese early-onset familial Alzheimer’s disease and increases amyloid-β42 to amyloid-β40 ratio. Neurobiology of Aging, 35(11), 2657, e2651–2657, e2656.

    Google Scholar 

  • Pimenova, A. A., Raj, T., & Goate, A. M. (2018). Untangling genetic risk for Alzheimer’s disease. Biological Psychiatry, 83(4), 300–310.

    Article  CAS  Google Scholar 

  • Pluta, R., & Ułamek-Kozioł, M. (2020). Tau protein-targeted therapies in Alzheimer’s disease: Current state and future perspectives. Exon Publications, 69–82.

    Google Scholar 

  • Ramakrishnan, V., Husain, R. A., & Ahmed, S. S. (2017). PSEN1 gene polymorphisms in Caucasian Alzheimer’s disease: A meta-analysis. Clinica Chimica Acta, 473, 65–70.

    Article  CAS  Google Scholar 

  • Rezaee, R., Behravan, E., Behravan, J., Soltani, F., Naderi, Y., Emami, B., & Iranshahi, M. (2014). Antigenotoxic activities of the natural dietary coumarins umbelliferone, herniarin and 7-isopentenyloxy coumarin on human lymphocytes exposed to oxidative stress. Drug and Chemical Toxicology, 37(2), 144–148.

    Article  CAS  Google Scholar 

  • Santamaría, T. Z., Gómez, P. Y., Galindo, I. F., González, M. G., Vázquez, A. O., & López, M. L. (2022). Pharmacogenetic studies in Alzheimer disease. Neurología (English Edition), 37(4), 287–303.

    Article  Google Scholar 

  • Sarker, S. D., & Nahar, L. (2017). Progress in the chemistry of naturally occurring coumarins. Progress in the Chemistry of Organic Natural Products, 106, 241–304.

    Article  CAS  Google Scholar 

  • Sayas, C. L., & Ávila, J. (2021). GSK-3 and tau: A key duet in Alzheimer’s disease. Cells, 10(4), 721.

    Article  CAS  Google Scholar 

  • Seo, W. D., Kim, J. Y., Ryu, H. W., Kim, J. H., Han, S.-I., Ra, J.-E., Seo, K. H., Jang, K. C., & Lee, J. H. (2013). Identification and characterisation of coumarins from the roots of Angelica dahurica and their inhibitory effects against cholinesterase. Journal of Functional Foods, 5(3), 1421–1431.

    Article  CAS  Google Scholar 

  • Singh, L., & Bhatti, R. (2023). Signaling pathways involved in the neuroprotective effect of osthole: Evidence and mechanisms. Molecular Neurobiology, 1–19.

    Google Scholar 

  • Singh, S., Agrawal, N., & Goyal, A. (2024). Role of alpha-7-nicotinic acetylcholine receptor in Alzheimer’s disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders).

    Google Scholar 

  • Somani, G., Kulkarni, C., Shinde, P., Shelke, R., Laddha, K., & Sathaye, S. (2015). In vitro acetylcholinesterase inhibition by psoralen using molecular docking and enzymatic studies. Journal of Pharmacy & Bioallied Sciences, 7(1), 32.

    Article  CAS  Google Scholar 

  • Süzgeç-Selçuk, S., & Dikpınar, T. (2021). Phytochemical evaluation of the Ferulago genus and the pharmacological activities of its coumarin constituents. Journal of Herbal Medicine, 25, 100415.

    Article  Google Scholar 

  • Tahami Monfared, A. A., Byrnes, M. J., White, L. A., & Zhang, Q. (2022). Alzheimer’s disease: Epidemiology and clinical progression. Neurology and Therapy, 11(2), 553–569.

    Article  Google Scholar 

  • Thakur, A., Sharma, R., Jaswal, V. S., Nepovimova, E., Chaudhary, A., & Kuca, K. (2020). Psoralen: A biologically important coumarin with emerging applications. Mini Reviews in Medicinal Chemistry, 20(18), 1838–1845.

    Article  CAS  Google Scholar 

  • Yamazaki, Y., Painter, M. M., Bu, G., & Kanekiyo, T. (2016). Apolipoprotein E as a therapeutic target in Alzheimer’s disease: A review of basic research and clinical evidence. CNS Drugs, 30(9), 773–789.

    Article  CAS  Google Scholar 

  • Yuan, X.-Z., Sun, S., Tan, C.-C., Yu, J.-T., & Tan, L. (2017). The role of ADAM10 in Alzheimer’s disease. Journal of Alzheimer’s Disease, 58(2), 303–322.

    Article  Google Scholar 

  • Zagaja, M., Andres-Mach, M., Patrzylas, P., Pyrka, D., Szpringer, M., Florek-Łuszczki, M., Żółkowska, D., Skalicka-Woźniak, K., & Łuszczki, J. J. (2016). Influence of xanthotoxin (8-methoxypsoralen) on the anticonvulsant activity of various novel antiepileptic drugs against maximal electroshock-induced seizures in mice. Fitoterapia, 115, 86–91.

    Article  CAS  Google Scholar 

  • Zhang, X., Li, Y., Xu, H., & Zhang, Y.-W. (2014). The γ-secretase complex: From structure to function. Frontiers in Cellular Neuroscience, 8, 427.

    Article  Google Scholar 

  • Zhang, Y.-W., Thompson, R., Zhang, H., & Xu, H. (2011). APP processing in Alzheimer’s disease. Molecular Brain, 4, 1–13.

    Article  CAS  Google Scholar 

  • Zhou, F., & Wang, D. (2017). The associations between the MAPT polymorphisms and Alzheimer’s disease risk: A meta-analysis. Oncotarget, 8(26), 43506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Khanavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dabaghian, F. et al. (2024). Gene-Based Management of Alzheimer’s Disease: Role of Coumarins of Ferulago Genus. In: Kumar, L., Bharadvaja, N., Singh, R., Anand, R. (eds) Medicinal and Aromatic Plants. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-60117-0_14

Download citation

Publish with us

Policies and ethics

Navigation