A Stacking Ensemble Approach for Robust Dengue Patient Detection from Complete Blood Count Data

  • Chapter
  • First Online:
Surveillance, Prevention, and Control of Infectious Diseases

Abstract

Dengue, a virus transmitted by mosquitoes, is a growing global health concern given its escalating incidence, significant death rates, and intense clinical signs. Despite the severity of the disease, there are substantial difficulties in accurately classifying dengue patients, correct patient classification remains problematic, which is crucial for timely intervention and patient management. In this study, we propose a comprehensive method for classifying 248 dengue-positive cases and 252 dengue-negative patients using tabular complete blood count (CBC) data from two different hospitals. There are missing variables in the dataset which is handled using Multivariate Imputation by Chained Equations (MICE) algorithm. This involves rigorous data preprocessing like data cleansing, statistical analysis, and missing data imputation. Among the different CBC parameters and demographic variables, by employing feature ranking and selection techniques, we are able to identify key characteristics. Thirteen classical machine learning (ML) models were trained for 5-fold cross-validation and finally, a Stacking-Based Meta-Classifier was trained using three top-performing model for Dengue patient identification along with a Nomogram-Based Scoring System. Extra Tree, Adaboost, and CatBoost Meta classifiers excel in their in-performance metrics. XGBoost Meta classifier achieves the highest F1-score of 97.8%. The Area Under Receiver Operating Characteristic Curve (ROC-AUC) scores are 0.976 for AdaBoost and 0.972 for Extra Tree and CatBoost, while the XGBoost meta-classifier attains an AUC score of 0.978. Shapley values shed light on feature contribution characteristics. Our proposed approach offers a robust framework for reliable dengue detection, facilitating timely medical response and easing the burden on health systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.G. Guzman et al., Dengue: A continuing global threat. Nat. Rev. Microbiol. 8(12), S7–S16 (2010). https://doi.org/10.1038/nrmicro2460

    Article  Google Scholar 

  2. J.R. Powell, Mosquito-borne human viral diseases: Why Aedes aegypti?, (in eng). Am. J. Trop. Med. Hygi. 98(6), 1563–1565 (2018). https://doi.org/10.4269/ajtmh.17-0866

    Article  Google Scholar 

  3. W. H. O. Who, Dengue and severe dengue, (in English), World Health Organization: WHO (2023). [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

  4. J. Slosek, Aedes aegypti mosquitoes in the Americas: A review of their interactions with the human population, (in eng). Soc. Sci. Med. 23(3), 249–257 (1986). https://doi.org/10.1016/0277-9536(86)90345-x

    Article  Google Scholar 

  5. M.J. Hopp, J.A. Foley, Global-scale relationships between climate and the dengue fever vector, Aedes Aegypti. Clim. Chang. 48(2), 441–463 (2001). https://doi.org/10.1023/A:1010717502442

    Article  Google Scholar 

  6. E.B. Beserra, C.R.M. Fernandes, S.A.D.O. Silva, L.A.D. Silva, J.W.D. Santos, Efeitos da temperatura no ciclo de vida, exigências térmicas e estimativas do número de gerações anuais de Aedes aegypti (Diptera, Culicidae). Iheringia. Série Zoologia 99, 142--148 (2009)

    Google Scholar 

  7. E.A.P.D.A. Costa, E.M.D.M. Santos, J.C. Correia, C.M.R.D. Albuquerque, Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia 54, 488--493 (2010)

    Google Scholar 

  8. C.P. Simmons, J.J. Farrar, N. van Vinh Chau, B. Wills, Dengue. N. Engl. J. Med. 366(15), 1423–1432 (2012). https://doi.org/10.1056/NEJMra1110265

    Article  Google Scholar 

  9. A. Wilder-Smith, D.J. Gubler, Geographic expansion of dengue: The impact of international travel. Med. Clin. North Am. 92(6), 1377–1390 (2008). https://doi.org/10.1016/j.mcna.2008.07.002

    Article  Google Scholar 

  10. H.A. Karam, J.C.B. da Silva, A.J.P. Filho, J.L.F. Rojas, Dynamic modelling of dengue epidemics in function of available enthalpy and rainfall (in English). Open J. Epidemiol 6(1), 50–79 (2015). https://doi.org/10.4236/ojepi.2016.61007

    Article  Google Scholar 

  11. B. Byttebier, M.S. De Majo, S. Fischer, Hatching response of Aedes aegypti (Diptera: Culicidae) eggs at low temperatures: Effects of hatching media and storage conditions. J. Med. Entomol. 51(1), 97–103 (2014). https://doi.org/10.1603/me13066

    Article  Google Scholar 

  12. V.J. Lee, D.C.B. Lye, Y. Sun, G. Fernandez, A. Ong, Y.S. Leo, Predictive value of simple clinical and laboratory variables for dengue hemorrhagic fever in adults. J. Clin. Virol. 42(1), 34–39 (2008). https://doi.org/10.1016/j.jcv.2007.12.017

    Article  Google Scholar 

  13. D. Muller, P. Young, Molecular Virology and Control of Flaviviruses (Caister Academic Press, 2012)

    Google Scholar 

  14. B. Shenoy, A. Menon, S. Biradar, Diagnostic utility of dengue NS1 antigen. Pediatr. Infect. Dis. 6(3), 110–113 (2014)

    Google Scholar 

  15. H. Zhang et al., NS1-based tests with diagnostic utility for confirming dengue infection: A meta-analysis. Int. J. Infect. Dis. 26, 57–66 (2014)

    Article  Google Scholar 

  16. T. Rahman et al., Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Appl. Sci. 10(9), 3233 (2020) [Online]. Available: https://www.mdpi.com/2076-3417/10/9/3233

    Article  Google Scholar 

  17. M.H. Chowdhury et al., Estimating blood pressure from the Photoplethysmogram signal and demographic features using machine learning techniques. Sensors 20(11), 3127 (2020) [Online]. Available: https://www.mdpi.com/1424-8220/20/11/3127

    Article  Google Scholar 

  18. M.E.H. Chowdhury et al., An early warning tool for predicting mortality risk of COVID-19 patients using machine learning. Cogn. Comput. (2021). https://doi.org/10.1007/s12559-020-09812-7

  19. T. Rahman et al., Mortality prediction utilizing blood biomarkers to predict the severity of COVID-19 using machine learning technique, (in eng). Diagnostics (Basel, Switzerland) 11(9) (2021). https://doi.org/10.3390/diagnostics11091582

  20. M.N.I. Shuzan et al., Machine learning-based respiration rate and blood oxygen saturation estimation using Photoplethysmogram signals, (in eng). Bioengineering (Basel, Switzerland) 10(2) (2023). https://doi.org/10.3390/bioengineering10020167

  21. M.A. Majeed, H.Z.M. Shafri, Z. Zulkafli, A. Wayayok, A deep learning approach for dengue fever prediction in Malaysia using LSTM with spatial attention. Int. J. Environ. Res. Public Health 20(5), 4130 (2023) [Online]. Available: https://www.mdpi.com/1660-4601/20/5/4130

    Article  Google Scholar 

  22. F.P. Rocha, M. Giesbrecht, Machine learning algorithms for dengue risk assessment: A case study for São Luís do Maranhão. Comput. Appl. Math. 41(8), 393 (2022). https://doi.org/10.1007/s40314-022-02101-z

    Article  Google Scholar 

  23. S.N. Manoharan, K.M.V.M. Kumar, N. Vadivelan, A novel CNN-TLSTM approach for dengue disease identification and prevention using IoT-fog cloud architecture. Neural. Process. Lett. 55(2), 1951–1973 (2023). https://doi.org/10.1007/s11063-022-10971-x

    Article  Google Scholar 

  24. H. Mayrose, G.M. Bairy, N. Sampathila, S. Belurkar, K. Saravu, Machine learning-based detection of dengue from blood smear images utilizing platelet and lymphocyte characteristics. Diagnostics 13(2), 220 (2023) [Online]. Available: https://www.mdpi.com/2075-4418/13/2/220

    Article  Google Scholar 

  25. D. Sarma, S. Hossain, T. Mittra, M.A.M. Bhuiya, I. Saha, R. Chakma, Dengue prediction using machine learning algorithms, in 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), (2020), p. 1–6. https://doi.org/10.1109/R10-HTC49770.2020.9357035

    Chapter  Google Scholar 

  26. A.L.V. Gomes et al., Classification of dengue fever patients based on gene expression data using support vector machines. PLoS One 5(6), e11267 (2010). https://doi.org/10.1371/journal.pone.0011267

    Article  Google Scholar 

  27. W. Caicedo-Torres, Á. Paternina, H. Pinzón, Machine learning models for early dengue severity prediction, in Advances in Artificial Intelligence - IBERAMIA 2016, ed. by M.M. Cham, G.H.J. Escalante, A. Segura, J.D.D. Murillo, (Springer International Publishing, 2016), pp. 247–258

    Chapter  Google Scholar 

  28. J.D. Mello-Román, J.C. Mello-Román, S. Gómez-Guerrero, M. García-Torres, Predictive models for the medical diagnosis of dengue: A case study in Paraguay, (in eng). Comput. Math. Methods Med. 2019, 7307803 (2019). https://doi.org/10.1155/2019/7307803

    Article  Google Scholar 

  29. T. Chakraborty, S. Chattopadhyay, I. Ghosh, Forecasting dengue epidemics using a hybrid methodology. Phys. A Statist. Mech. Appl. 527, 121266 (2019). https://doi.org/10.1016/j.physa.2019.121266

    Article  Google Scholar 

  30. D.K. Ming et al., The diagnosis of dengue in patients presenting with acute febrile illness using supervised machine learning and impact of seasonality, (in English). Front. Digit. Health, Original Research 4 (2022). https://doi.org/10.3389/fdgth.2022.849641

  31. H. Hegde, N. Shimpi, A. Panny, I. Glurich, P. Christie, A. Acharya, MICE vs PPCA: Missing data imputation in healthcare. Inform. Med. Unlock. 17, 100275 (2019). https://doi.org/10.1016/j.imu.2019.100275

    Article  Google Scholar 

  32. J.R. Stevens, A. Suyundikov, M.L. Slattery, Accounting for missing data in clinical research, (in eng). JAMA 315(5), 517–518 (2016). https://doi.org/10.1001/jama.2015.16461

    Article  Google Scholar 

  33. T. Dahiru, P - value, a true test of statistical significance? A cautionary note, (in eng). Ann. Ibadan Postgrad. Med. 6(1), 21–26 (2008). https://doi.org/10.4314/aipm.v6i1.64038

    Article  Google Scholar 

  34. T.K. Kim, T test as a parametric statistic. kja 68(6), 540–546 (2015). https://doi.org/10.4097/kjae.2015.68.6.540

    Article  Google Scholar 

  35. J. Cuzick, A Wilcoxon-type test for trend, (in eng). Stat. Med. 4(1), 87–90 (1985). https://doi.org/10.1002/sim.4780040112

    Article  MathSciNet  Google Scholar 

  36. D. Singh, B. Singh, Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 97, 105524 (2020). https://doi.org/10.1016/j.asoc.2019.105524

    Article  Google Scholar 

  37. N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  38. S.S.S.J. Surendiran, N. Yuvaraj, M. Ramkumar, C.N. Ravi, R.G. Vidhya, Classification of diabetes using multilayer perceptron, in 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), 23–24 April 2022, (2022), pp. 1–5. https://doi.org/10.1109/ICDCECE53908.2022.9793085

    Chapter  Google Scholar 

  39. D.K. Choubey, M. Kumar, V. Shukla, S. Tripathi, V.K. Dhandhania, Comparative analysis of classification methods with PCA and LDA for diabetes. Curr. Diabetes Rev. 16(8), 833–850 (2020)

    Google Scholar 

  40. M.A.A. Faisal et al., An investigation to study the effects of Tai Chi on human gait dynamics using classical machine learning. Comput. Biol. Med. 142, 105184 (2022)

    Article  Google Scholar 

  41. F. Haque et al., A machine learning-based severity prediction tool for the Michigan neuropathy screening instrument. Diagnostics 13(2), 264 (2023)

    Article  Google Scholar 

  42. S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy, Improvements to Platt's SMO algorithm for SVM classifier design. Neural Comput. 13(3), 637–649 (2001). https://doi.org/10.1162/089976601300014493

    Article  Google Scholar 

  43. A. Sharaff, H. Gupta, Extra-tree classifier with metaheuristics approach for email classification, in Advances in Computer Communication and Computational Sciences: Proceedings of IC4S 2018, (Springer, 2019), pp. 189–197

    Chapter  Google Scholar 

  44. A. Khandakar et al., A machine learning model for early detection of diabetic foot using thermogram images. Comput. Biol. Med. 137, 104838 (2021). https://doi.org/10.1016/j.compbiomed.2021.104838

    Article  Google Scholar 

  45. G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, KNN model-based approach in classification, in On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, ed. by R. Meersman, Z. Tari, D.C. Schmidt, (Springer, Berlin, Heidelberg, 2003), pp. 986–996

    Chapter  Google Scholar 

  46. A. Natekin, A. Knoll, Gradient boosting machines, a tutorial. Front. Neurorobot. 7, 21 (2013)

    Article  Google Scholar 

  47. M. Al-Sarem, F. Saeed, W. Boulila, A.H. Emara, M. Al-Mohaimeed, M. Errais, Feature selection and classification using CatBoost method for improving the performance of predicting Parkinson’s disease, in Advances on Smart and Soft Computing: Proceedings of ICACIn 2020, (Springer, 2021), pp. 189–199

    Chapter  Google Scholar 

  48. M. Pal, Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1), 217–222 (2005). https://doi.org/10.1080/01431160412331269698

    Article  Google Scholar 

  49. S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, (Curran Associates Inc., Red Hook, 2017), pp. 4768–4777

    Google Scholar 

  50. An introduction to explainable AI with Shapley values — SHAP latest documentation, ed (2023)

    Google Scholar 

  51. A. Zlotnik, V. Abraira, A general-purpose nomogram generator for predictive logistic regression models. Stata J. 15(2), 537–546 (2015) [Online]. Available: https://econpapers.repec.org/article/tsjstataj/v_3a15_3ay_3a2015_3ai_3a2_3ap_3a537-546.htm

    Article  Google Scholar 

  52. N. Ibtehaz, M.E.H. Chowdhury, A. Khandakar, S. Kiranyaz, M.S. Rahman, S.M. Zughaier, RamanNet: A generalized neural network architecture for Raman spectrum analysis. Neural Comput. & Applic. 35(25), 18719–18735 (2023). https://doi.org/10.1007/s00521-023-08700-z

    Article  Google Scholar 

  53. X. Yang, M.B. Quam, T. Zhang, S. Sang, Global burden for dengue and the evolving pattern in the past 30 years. J. Travel Med. 28(8), taab146 (2021)

    Article  Google Scholar 

  54. K.K. Bhowmik, J. Ferdous, P.K. Baral, M.S. Islam, Recent outbreak of dengue in Bangladesh: A threat to public health, (in eng). Health Sci. Rep. 6(4), e1210 (2023). https://doi.org/10.1002/hsr2.1210

    Article  Google Scholar 

  55. ACAPS Briefing note - Bangladesh 2023 Dengue Outbreak (26 September 2023) - Bangladesh, ed (2023)

    Google Scholar 

  56. T. Rahman et al., QCovSML: A reliable COVID-19 detection system using CBC biomarkers by a stacking machine learning model. Comput. Biol. Med. 143, 105284 (2022). https://doi.org/10.1016/j.compbiomed.2022.105284

    Article  Google Scholar 

  57. T.-S. Ho et al., Comparing machine learning with case-control models to identify confirmed dengue cases. PLoS Negl. Trop. Dis. 14(11), e0008843 (2020). https://doi.org/10.1371/journal.pntd.0008843

    Article  Google Scholar 

Download references

Code and Data Availability Statement

Code for data cleaning and analysis is provided as part of the replication package and is available at https://github.com/Sohan2087/A-Stacking-Ensemble-Approach-for-Robust-Dengue-Patient-Detection-from-Complete-Blood-Count-Data.

Conflicts of Interest

Authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad E. H. Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M.S. et al. (2024). A Stacking Ensemble Approach for Robust Dengue Patient Detection from Complete Blood Count Data. In: Chowdhury, M.E.H., Kiranyaz, S. (eds) Surveillance, Prevention, and Control of Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-59967-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59967-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59966-8

  • Online ISBN: 978-3-031-59967-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation