Online Algorithms for Spectral Hypergraph Sparsification

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2024)

Abstract

We provide the first online algorithm for spectral hypergraph sparsification. In the online setting, hyperedges with positive weights are arriving in a stream, and upon the arrival of each hyperedge, we must irrevocably decide whether or not to include it in the sparsifier. Our algorithm produces an \((\varepsilon , \delta )\)-spectral sparsifier with multiplicative error \(\varepsilon \) and additive error \(\delta \) that has \(O(\varepsilon ^{-2} n \log n \log r \log (1 + \varepsilon W/\delta n))\) hyperedges with high probability, where \(\varepsilon , \delta \in (0,1)\), n is the number of nodes, r is the rank of the hypergraph, and W is the sum of edge weights. The space complexity of our algorithm is \(O(n^2)\), while previous algorithms required space complexity \(\varOmega (m)\), where m is the number of hyperedges. This provides an exponential improvement in the space complexity since m can be exponential in n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As pointed out in [7], the original analysis has a subtle dependency issue. Later, [4] provided a complete analysis of their algorithm.

References

  1. Bansal, N., Svensson, O., Trevisan, L.: New notions and constructions of sparsification for graphs and hypergraphs. In: Proceedings of the IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 910–928 (2019)

    Google Scholar 

  2. Batson, J., Spielman, D.A., Srivastava, N., Teng, S.H.: Spectral sparsification of graphs: theory and algorithms. Commun. ACM 56(8), 87–94 (2013)

    Article  Google Scholar 

  3. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  4. Calandriello, D., Lazaric, A., Valko, M.: Analysis of Kelner and Levin graph sparsification algorithm for a streaming setting. ar**v (2016)

    Google Scholar 

  5. Chan, T.H.H., Louis, A., Tang, Z.G., Zhang, C.: Spectral properties of hypergraph laplacian and approximation algorithms. J. ACM 65(3), 1–48 (2018). https://doi.org/10.1145/3178123

    Article  MathSciNet  Google Scholar 

  6. Chung, F., Lu, L.: Concentration inequalities and martingale inequalities: a survey. Internet Math. 3(1), 79–127 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cohen, M.B., Musco, C., Pachocki, J.: Online row sampling. Theory Comput. 16(1), 1–25 (2020). https://doi.org/10.4086/toc.2020.v016a015

    Article  MathSciNet  Google Scholar 

  8. Jambulapati, A., Lee, J.R., Liu, Y.P., Sidford, A.: Sparsifying sums of norms. ar**v (2023)

    Google Scholar 

  9. Jambulapati, A., Liu, Y.P., Sidford, A.: Chaining, group leverage score overestimates, and fast spectral hypergraph sparsification. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC), pp. 196–206 (2023)

    Google Scholar 

  10. Kapralov, M., Krauthgamer, R., Tardos, J., Yoshida, Y.: Towards tight bounds for spectral sparsification of hypergraphs. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 598–611 (2021)

    Google Scholar 

  11. Kapralov, M., Krauthgamer, R., Tardos, J., Yoshida, Y.: Spectral hypergraph sparsifiers of nearly linear size. In: Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 1159–1170 (2022)

    Google Scholar 

  12. Kapralov, M., Lee, Y.T., Musco, C., Musco, C.P., Sidford, A.: Single pass spectral sparsification in dynamic streams. SIAM J. Comput. 46(1), 456–477 (2017)

    Article  MathSciNet  Google Scholar 

  13. Kelner, J.A., Levin, A.: Spectral sparsification in the semi-streaming setting. Theory Comput. Syst. 53(2), 243–262 (2013)

    Article  MathSciNet  Google Scholar 

  14. Lee, J.R.: Spectral hypergraph sparsification via chaining. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pp. 207–218 (2023)

    Google Scholar 

  15. Oko, K., Sakaue, S., Tanigawa, S.: Nearly tight spectral sparsification of directed hypergraphs. In: The Proceedings of the 50th International Colloquium on Automata, Languages, and Programming (ICALP) (2023)

    Google Scholar 

  16. Rafiey, A., Yoshida, Y.: Sparsification of decomposable submodular functions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 10336–10344 (2022)

    Google Scholar 

  17. Soma, T., Yoshida, Y.: Spectral sparsification of hypergraphs. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2570–2581. SIAM (2019)

    Google Scholar 

  18. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM J. Comput. 40(6), 1913–1926 (2011). https://doi.org/10.1137/080734029

    Article  MathSciNet  Google Scholar 

  19. Spielman, D.A., Teng, S.H.: Spectral sparsification of graphs. SIAM J. Comput. 40(4), 981–1025 (2011)

    Article  MathSciNet  Google Scholar 

  20. Talagrand, M.: Upper and Lower Bounds for Stochastic Processes. Springer, Cham (2014)

    Book  Google Scholar 

  21. Vishnoi, N.K.: \(Lx = b\), laplacian solvers and their algorithmic applications. Found. Trends® Theor. Comput. Sci. 8(1-2), 1–141 (2013). https://doi.org/10.1561/0400000054

Download references

Acknowledgements

TS is supported by JSPS KAKENHI Grant Number JP19K20212. A part of this work was done during KT’s visit to National Institute of Informatics. YY is supported by JSPS KAKENHI Grant Number JP20H05965 and JP22H05001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam Chuen Tung .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of the article.

Full version

The full version of the article can be found at ar**v:2310.02643.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soma, T., Tung, K.C., Yoshida, Y. (2024). Online Algorithms for Spectral Hypergraph Sparsification. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59835-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59834-0

  • Online ISBN: 978-3-031-59835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation