Decomposing Probability Marginals Beyond Affine Requirements

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14679))

  • 162 Accesses

Abstract

Consider the triplet \((E, \mathcal {P}, \pi )\), where E is a finite ground set, \(\mathcal {P}\subseteq 2^E\) is a collection of subsets of E and \(\pi : \mathcal {P}\rightarrow [0,1]\) is a requirement function. Given a vector of marginals \(\rho \in [0, 1]^E\), our goal is to find a distribution for a random subset \(S \subseteq E\) such that \(\textbf{Pr}\left[ e \in S\right] = \rho _e\) for all \(e \in E\) and \(\textbf{Pr}\left[ P \cap S \ne \emptyset \right] \ge \pi _P\) for all \(P \in \mathcal {P}\), or to determine that no such distribution exists.

Generalizing results of Dahan, Amin, and Jaillet [6], we devise a generic decomposition algorithm that solves the above problem when provided with a suitable sequence of admissible support candidates (ASCs). We show how to construct such ASCs for numerous settings, including supermodular requirements, Hoffman-Schwartz-type lattice polyhedra [14], and abstract networks where \(\pi \) fulfils a conservation law. The resulting algorithm can be carried out efficiently when \(\mathcal {P}\) and \(\pi \) can be accessed via appropriate oracles. For any system allowing the construction of ASCs, our results imply a simple polyhedral description of the set of marginal vectors for which the decomposition problem is feasible. Finally, we characterize balanced hypergraphs as the systems \((E, \mathcal {P})\) that allow the perfect decomposition of any marginal vector \(\rho \in [0,1]^E\), i.e., where we can always find a distribution reaching the highest attainable probability \(\textbf{Pr}\left[ P \cap S \ne \emptyset \right] = \min \left\{ \sum _{e \in P} \rho _e, 1\right\} \) for all \(P \in \mathcal {P}\).

Proofs of results marked with \((\clubsuit )\) can be found in the full version [24].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 70.18
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 79.17
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we can assume \(\pi _P \in [0, 1]\) without loss of generality in the definition of \(Z_{\pi }\), but we allow negative values for notational convenience in later parts of the paper.

  2. 2.

    In particular, note that \(\varepsilon _{\bar{\pi },\bar{\rho }}(S)\) can be computed using at most |S| iterations of the discrete Newton algorithm if we can solve problem (ii) from Sect. 1.3, i.e., the maximum violated inequality problem for \(Y^{\star }\).

  3. 3.

    Note that \(|\mathcal {P}|\) is bounded by \(\mathcal {O}(|E|^2)\) for any balanced hypergraph [13]. Thus, the stated running time holds even when \(\mathcal {P}\) is given explicitly.

References

  1. Berge, C.: The rank of a family of sets and some applications to graph theory. In: Recent Progress in Combinatorics, pp. 49–57. Academic Press, New York (1969)

    Google Scholar 

  2. Border, K.C.: Implementation of reduced form auctions: a geometric approach. Econometrica 59, 1175–1187 (1991)

    Article  MathSciNet  Google Scholar 

  3. Brandl, F., Brandt, F., Seedig, H.G.: Consistent probabilistic social choice. Econometrica 84, 1839–1880 (2016)

    Article  MathSciNet  Google Scholar 

  4. Çela, E., Klinz, B., Lendl, S., Woeginger, G.J., Wulf, L.: A linear time algorithm for linearizing quadratic and higher-order shortest path problems. In: Del Pia, A., Kaibel, V. (eds.) IPCO 2023. LNCS, vol. 13904, pp. 466–479. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32726-1_33

    Chapter  Google Scholar 

  5. Conforti, M., Cornuéjols, G., Vušković, K.: Balanced matrices. Discrete Math. 306, 2411–2437 (2006)

    Article  MathSciNet  Google Scholar 

  6. Dahan, M., Amin, S., Jaillet, P.: Probability distributions on partially ordered sets and network interdiction games. Math. Oper. Res. 47, 458–484 (2022)

    Article  MathSciNet  Google Scholar 

  7. Demeulemeester, T., Goossens, D., Hermans, B., Leus, R.: A pessimist’s approach to one-sided matching. Eur. J. Oper. Res. 305, 1087–1099 (2023)

    Article  MathSciNet  Google Scholar 

  8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 269, 271 (1959)

    MathSciNet  Google Scholar 

  9. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  Google Scholar 

  10. Frank, A.: Increasing the rooted-connectivity of a digraph by one. Math. Program. 84, 565–576 (1999)

    Article  MathSciNet  Google Scholar 

  11. Fulkerson, D.R., Hoffman, A.J., Oppenheim, R.: On balanced matrices. In: Pivoting and Extension: In honor of AW Tucker, pp. 120–132 (1974)

    Google Scholar 

  12. Gopalan, P., Nisan, N., Roughgarden, T.: Public projects, Boolean functions, and the borders of Border’s theorem. ACM Trans. Econ. Comput. (TEAC) 6, 1–21 (2018)

    Article  MathSciNet  Google Scholar 

  13. Heller, I.: On linear systems with integral valued solutions. Pac. J. Math. 7, 1351–1364 (1957)

    Article  MathSciNet  Google Scholar 

  14. Hoffman, A., Schwartz, D.: On lattice polyhedra. In: Proceedings of the Fifth Hungarian Combinatorial Colloquium, North-Holland (1978)

    Google Scholar 

  15. Hoffman, A.J.: A generalization of max flow–min cut. Math. Program. 6, 352–359 (1974)

    Article  MathSciNet  Google Scholar 

  16. Kappmeier, J.P.W., Matuschke, J., Peis, B.: Abstract flows over time: a first step towards solving dynamic packing problems. Theor. Comput. Sci. 544, 74–83 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kawase, Y., Sumita, H.: Randomized strategies for robust combinatorial optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7876–7883 (2019)

    Google Scholar 

  18. Kawase, Y., Sumita, H., Fukunaga, T.: Submodular maximization with uncertain knapsack capacity. SIAM J. Discrete Math. 33, 1121–1145 (2019)

    Article  MathSciNet  Google Scholar 

  19. Kobayashi, Y., Takazawa, K.: Randomized strategies for cardinality robustness in the knapsack problem. Theor. Comput. Sci. 699, 53–62 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kornblum, D.: Greedy algorithms for some optimization problems on a lattice polyhedron. Ph.D. thesis, City University of New York (1978)

    Google Scholar 

  21. Kraft, D., Fadaei, S., Bichler, M.: Fast convex decomposition for truthful social welfare approximation. In: Liu, T.Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 120–132. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13129-0_9

    Chapter  Google Scholar 

  22. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. J. ACM (JACM) 58, 1–24 (2011)

    Article  MathSciNet  Google Scholar 

  23. Martens, M., McCormick, S.T.: A polynomial algorithm for weighted abstract flow. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 97–111. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4_7

    Chapter  Google Scholar 

  24. Matuschke, J.: Decomposing probability marginals beyond affine requirements. Technical report (2023). ar**v:2311.03346

  25. Matuschke, J.: Decomposition of probability marginals for security games in max-flow/min-cut systems. Technical report (2023). ar**v:2211.04922 (A prelimary version appeared under the title “Decomposition of Probability Marginals for Security Games in Abstract Networks” at IPCO 2023.)

  26. Matuschke, J., Peis, B.: Lattices and maximum flow algorithms in planar graphs. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 324–335. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_30

    Chapter  Google Scholar 

  27. Matuschke, J., Skutella, M., Soto, J.A.: Robust randomized matchings. Math. Oper. Res. 43, 675–692 (2018)

    Article  MathSciNet  Google Scholar 

  28. McCormick, S.T.: A polynomial algorithm for abstract maximum flow. In: Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 490–497 (1996)

    Google Scholar 

  29. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannik Matuschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matuschke, J. (2024). Decomposing Probability Marginals Beyond Affine Requirements. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59835-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59834-0

  • Online ISBN: 978-3-031-59835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation