Multiple Lump and Rogue Wave Solutions of a Modified Benjamin-Ono Equation

  • Conference paper
  • First Online:
Nonlinear and Modern Mathematical Physics (NMMP 2022)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 459))

Included in the following conference series:

  • 101 Accesses

Abstract

In this chapter, a (2+1)-dimensional modified Benjamin-Ono (MBO) equation is introduced. Multiple lump (M-lump) and rogue wave solutions are obtained for the equation with the aid of the Hirota bilinear method. The equation is first studied in two parts: an integrable and a nonintegrable part. The nonintegrable part is found to possess 1-lump and line rogue wave solutions whereas the integrable part has only 1-lump solutions. Furthermore, the MBO equation is found to posses both multiple lump and rogue wave solutions. By fixing parameter values, the dynamics of the solutions are studied with 3D and density plots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 154.07
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Manukure, T. Booker, A short overview of solitons and applications, Partial Differential Equations in Applied Mathematics 4 (2021) 100140.

    Article  Google Scholar 

  2. G. Fibich, The nonlinear Schrödinger equation, Vol. 192, Springer, 2015.

    Google Scholar 

  3. W.-X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, Journal of Differential Equations 264 (4) (2018) 2633–2659.

    Article  MathSciNet  Google Scholar 

  4. W.-X. Ma, Lump solutions to the Kadomtsev–Petviashvili equation, Physics Letters A 379 (36) (2015) 1975–1978.

    Article  MathSciNet  Google Scholar 

  5. S. Manukure, Y. Zhou, W.-X. Ma, Lump solutions to a (2+1)-dimensional extended KP equation, Computers & Mathematics with Applications 75 (7) (2018) 2414–2419.

    Article  MathSciNet  Google Scholar 

  6. I. S. Aranson, A. Pikovsky, N. F. Rulkov, L. S. Tsimring, Advances in Dynamics, Patterns, Cognition, Springer, 2017.

    Google Scholar 

  7. S. Manakov, V. E. Zakharov, L. Bordag, A. Its, V. Matveev, Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Physics Letters A 63 (3) (1977) 205–206.

    Article  Google Scholar 

  8. P. A. Clarkson, E. Dowie, Rational solutions of the Boussinesq equation and applications to rogue waves, Transactions of Mathematics and its Applications 1 (1) (2017) tnx003.

    Google Scholar 

  9. J.-b. Zhang, W.-X. Ma, Mixed lump-kink solutions to the BKP equation, Computers & Mathematics with Applications 74 (3) (2017) 591–596.

    Article  MathSciNet  Google Scholar 

  10. Y. Zhou, S. Manukure, Rational and interactive solutions to the B-type Kadomtsev-Petviashvili equation, Journal of Applied Analysis & Computation 11 (5) (2021) 2473–2490.

    Article  MathSciNet  Google Scholar 

  11. J.-Y. Yang, W.-X. Ma, Z. Qin, Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation, Analysis and Mathematical Physics 8 (2018) 427–436.

    MathSciNet  Google Scholar 

  12. Y. Zhou, S. Manukure, W.-X. Ma, Lump and lump-soliton solutions to the Hirota–Satsuma–Ito equation, Communications in Nonlinear Science and Numerical Simulation 68 (2019) 56–62.

    Article  MathSciNet  Google Scholar 

  13. H.-Q. Zhang, W.-X. Ma, Lump solutions to the (2+1)-dimensional Sawada–Kotera equation, Nonlinear Dynamics 87 (2017) 2305–2310.

    Article  MathSciNet  Google Scholar 

  14. J. Satsuma, M. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, Journal of Mathematical Physics 20 (7) (1979) 1496–1503.

    Article  MathSciNet  Google Scholar 

  15. K. Imai, K. Nozaki, Lump solutions of the Ishimori-II equation, Progress of theoretical physics 96 (3) (1996) 521–526.

    Article  MathSciNet  Google Scholar 

  16. K. Imai, Dromion and lump solutions of the Ishimori-I equation, Progress of Theoretical Physics 98 (5) (1997) 1013–1023.

    Article  Google Scholar 

  17. S. Manukure, Y. Zhou, A study of lump and line rogue wave solutions to a (2+1)-dimensional nonlinear equation, Journal of Geometry and Physics 167 (2021) 104274.

    Article  MathSciNet  Google Scholar 

  18. D. Gao, X. Lü, M.-S. Peng, Study on the (2+ 1)-dimensional extension of Hietarinta equation: soliton solutions and bäcklund transformation, Physica Scripta 98 (9) (2023) 095225.

    Article  Google Scholar 

  19. B.-Q. Li, Y.-L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation arising from incompressible fluid, Computers & Mathematics with Applications 76 (1) (2018) 204–214.

    Article  MathSciNet  Google Scholar 

  20. Y. Tian, J.-G. Liu, Study on dynamical behavior of multiple lump solutions and interaction between solitons and lump wave, Nonlinear Dynamics 104 (2021) 1507–1517.

    Article  Google Scholar 

  21. W.-X. Ma, Y. Zhou, R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations, International Journal of Modern Physics B 30 (28n29) (2016) 1640018.

    Google Scholar 

  22. J. M. Dudley, V. Sarano, F. Dias, On Hokusai’s Great wave off Kanagawa: Localization, linearity and a rogue wave in sub-antarctic waters, Notes and Records of the Royal Society 67 (2) (2013) 159–164.

    Article  Google Scholar 

  23. R. Grimshaw, E. Pelinovsky, T. Taipova, A. Sergeeva, Rogue internal waves in the ocean: Long wave model, The European Physical Journal Special Topics 185 (1) (2010) 195–208.

    Article  Google Scholar 

  24. F. Fedele, Rogue waves in oceanic turbulence, Physica D: Nonlinear Phenomena 237 (14-17) (2008) 2127–2131.

    Article  MathSciNet  Google Scholar 

  25. D. R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves, nature 450 (7172) (2007) 1054–1057.

    Google Scholar 

  26. D.-I. Yeom, B. J. Eggleton, Rogue waves surface in light, Nature 450 (7172) (2007) 953–954.

    Article  Google Scholar 

  27. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley, The Peregrine soliton in nonlinear fibre optics, Nature Physics 6 (10) (2010) 790–795.

    Article  Google Scholar 

  28. B. Frisquet, B. Kibler, P. Morin, F. Baronio, M. Conforti, G. Millot, S. Wabnitz, Optical dark rogue wave, Scientific Reports 6 (1) (2016) 20785.

    Article  Google Scholar 

  29. F. Baronio, B. Frisquet, S. Chen, G. Millot, S. Wabnitz, B. Kibler, Observation of a group of dark rogue waves in a telecommunication optical fiber, Physical Review A 97 (1) (2018) 013852.

    Article  Google Scholar 

  30. H. Bailung, S. Sharma, Y. Nakamura, Observation of Peregrine solitons in a multicomponent plasma with negative ions, Physical review letters 107 (25) (2011) 255005.

    Article  Google Scholar 

  31. N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace, Physics Letters A 373 (6) (2009) 675–678.

    Article  Google Scholar 

  32. B. Yang, J. Yang, General rogue waves in the Boussinesq equation, Journal of the Physical Society of Japan 89 (2) (2020) 024003.

    Article  Google Scholar 

  33. G. Mu, Z. Qin, R. Grimshaw, Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation, SIAM Journal on Applied Mathematics 75 (1) (2015) 1–20.

    Article  MathSciNet  Google Scholar 

  34. J. Rao, A. S. Fokas, J. He, Doubly localized two-dimensional rogue waves in the Davey–Stewartson I equation, Journal of Nonlinear Science 31 (4) (2021) 67.

    Article  MathSciNet  Google Scholar 

  35. R. Hirota, The direct method in soliton theory, no. 155, Cambridge University Press, 2004.

    Google Scholar 

  36. T. B. Benjamin, Internal waves of permanent form in fluids of great depth, Journal of Fluid Mechanics 29 (3) (1967) 559–592.

    Article  Google Scholar 

  37. H. Ono, Algebraic solitary waves in stratified fluids, Journal of the Physical Society of Japan 39 (4) (1975) 1082–1091.

    Article  MathSciNet  Google Scholar 

  38. A. S. Fokas, M. J. Ablowitz, The inverse scattering transform for the Benjamin-Ono equation-a pivot to multidimensional problems, Studies in Applied Mathematics 68 (1) (1983) 1–10.

    Article  MathSciNet  Google Scholar 

  39. R. R. Coifman, M. V. Wickerhauser, The scattering transform for the Benjamin-Ono equation, Inverse Problems 6 (5) (1990) 825.

    Article  MathSciNet  Google Scholar 

  40. L. Akinyemi, Shallow ocean soliton and localized waves in extended (2+1)-dimensional nonlinear evolution equations, Physics Letters A 463 (2023) 128668.

    Article  MathSciNet  Google Scholar 

  41. Zhaqilao, A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems, Computers and Mathematics with Applications 75 (9) (2018) 3331–3342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manukure, S., Zhou, Y. (2024). Multiple Lump and Rogue Wave Solutions of a Modified Benjamin-Ono Equation. In: Manukure, S., Ma, WX. (eds) Nonlinear and Modern Mathematical Physics. NMMP 2022. Springer Proceedings in Mathematics & Statistics, vol 459. Springer, Cham. https://doi.org/10.1007/978-3-031-59539-4_12

Download citation

Publish with us

Policies and ethics

Navigation