Friction Stir Welding for Aerospace Alloys

  • Chapter
  • First Online:
Joining Operations for Aerospace Materials

Part of the book series: Sustainable Aviation ((SA))

  • 20 Accesses

Abstract

Friction stir welding (FSW) has gained prominence as a transformative welding technique, especially for aerospace alloys, owing to its inherent advantages over conventional fusion welding methods. FSW offers distinct advantages, including minimized thermal distortion, improved mechanical properties, and a reduced heat-affected zone, addressing the challenges posed by traditional welding methods. Focused primarily on metals alloys and composites, this study explores the main process parameters, tool materials, and design considerations, critical for achieving superior weld quality and mechanical performance. This chapter investigates into the microstructural evolution during FSW, emphasizing the impact of welding parameters on grain refinement and defect mitigation. The study also discusses recent advancements in tool design and process optimization techniques to enhance the efficiency and reproducibility of FSW in aerospace manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas WD, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ. Friction stir butt welding, GB Patent 9125978.8, International patent PCT/GB92/02203. 1991.

    Google Scholar 

  2. Padhy GK, Wu CS, Gao S. Friction stir based welding and processing technologies—processes, parameters, microstructures and applications: a review. J Mater Sci Technol. 2018;34(1):1–38.

    Article  Google Scholar 

  3. Milčić M, Burzić Z, Radisavljević I, Vuherer T, Milčić D, Grabulov V. Experimental investigation of fatigue properties of FSW in AA2024-T351. Procedia Struct Integr. 2018;13:1977–84.

    Article  Google Scholar 

  4. Badkoobeh F, Mostaan H, Rafiei M, Bakhsheshi-Rad HR, Berto F. Friction stir welding/processing of Mg-based alloys: a critical review on advancements and challenges. Materials (Basel). 2021;14(21):6726.

    Article  Google Scholar 

  5. Staines DG, Thomas WM, Kallee SW, Oakley PJ. Friction stir technology—recent developments in process variants and applications. In: COM. Oct 1–4 2006.

    Google Scholar 

  6. Dalder E, Pastrnak JW, Engel J, Forrest RS, Kokko E, McTernan K, et al. Bobbin-tool friction—stir welding of thick-walled aluminum alloy pressure vessels. Weld J. 2008;87:40–4.

    Google Scholar 

  7. Ahmed MMZ, El-Sayed Seleman MM, Fydrych D, Çam G. Friction stir welding of aluminum in the aerospace industry: the current progress and state-of-the-art review. Materials (Basel). 2023;16(8):2971.

    Article  Google Scholar 

  8. Mabuwa S, Msomi V. Review on friction stir processed TIG and friction stir welded dissimilar alloy joints. Metals (Basel). 2020;10(1):142.

    Article  Google Scholar 

  9. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng. 2005;50:1–78.

    Article  Google Scholar 

  10. Thomas WM, Johnson KI, Wiesner CS. Friction stir welding—recent developments in tool and process technologies. Adv Eng Mater. 2003;5:485–90.

    Article  Google Scholar 

  11. Mishra R, Sidhar H. Friction stir welding of 2XXX Aluminum alloys including Al Li alloys. Oxford, Reino Unido: Butterworth-Heinemann; 2016.

    Google Scholar 

  12. Wang G, Zhao Y, Hao Y. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. J Mater Sci Technol. 2018;34(1):73–91.

    Article  Google Scholar 

  13. Meng X, Huang Y, Cao J, Shen J, dos Santos JF. Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci. 2021;115:100706.

    Article  Google Scholar 

  14. Pikula J, Kwieciński K, Grzegorz Porembski AP. FEM simulation of the FSW process of heat exchanger components | Institute of Welding Bulletin. Bull Inst Weld. 2016;3:23–9.

    Google Scholar 

  15. Okninski A. Solid rocket propulsion technology for de-orbiting spacecraft. Chinese J Aeronaut. 2022;35(3):128–54.

    Article  Google Scholar 

  16. Aldanondo E, Arruti E, Garagorri J, Echeverria A. Dissimilar aluminum-steel FSW lap joints. In: Friction stir welding and processing VIII. Cham: Springer International Publishing; 2016. p. 137–43.

    Google Scholar 

  17. Gaurav S, Mishra RS, Zunaid M. A critical review on mechanical and microstructural properties of dissimilar aluminum (Al)-magnesium (Mg) alloys. J Adhes Sci Technol. 2023;37(7):1117–49.

    Article  Google Scholar 

  18. Jacquin D, Guillemot G. A review of microstructural changes occurring during FSW in aluminium. J Mater Process Tech. 2021;288:116706.

    Article  Google Scholar 

  19. Çam G, Mistikoglu S. Recent developments in friction stir welding of al-alloys. J Mater Eng Perform. 2014;23(6):1936–53.

    Article  Google Scholar 

  20. Ding Z, Fan Q, Wang L. A review on friction stir processing of titanium alloy: characterization, method, microstructure, properties. Metall Mater Trans B Process Metall Mater Process Sci. 2019;50(5):2134–62.

    Article  Google Scholar 

  21. Li H, Gao J, Li Q. Fatigue of friction stir welded aluminum alloy joints: a review. Appl Sci. 2018;8(12):2626.

    Article  Google Scholar 

  22. Kashaev N, Ventzke V, Çam G. Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. J Manuf Process. 2018;36:571–600.

    Article  Google Scholar 

  23. Singh K, Singh G, Singh H. Review on friction stir welding of magnesium alloys. J Magn Alloy. 2018;6(4):399–416.

    Article  Google Scholar 

  24. Singh VP, Patel SK, Ranjan A, Kuriachen B. Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: a critical review. J Mater Res Technol. 2020;9(3):6217–56.

    Article  Google Scholar 

  25. Strawn C, Strauss AM. Investigation of friction stir welding for lunar applications. Acta Astronaut. 2023;210:364–71.

    Article  Google Scholar 

  26. Bhojak V, Jain JK, Saxena KK, Singh B, Mohammed KA. Friction stir process: a comprehensive review on material and methodology. Indian J Eng Mater Sci. 2023;30(1):45–64.

    Google Scholar 

  27. Mabuwa S, Msomi V, Muribwathoho O, Saasebeng Motshwanedi S. The microstructure and mechanical properties of the friction stir processed TIG-welded aerospace dissimilar aluminium alloys. Mater Today Proc. 2021;46:658–64.

    Article  Google Scholar 

  28. Anandan B, Manikandan M. Effect of welding speeds on the metallurgical and mechanical property characterization of friction stir welding between dissimilar aerospace grade 7050 T7651-2014A T6 aluminium alloys. Mater Today Commun. 2023;35:106246.

    Article  Google Scholar 

  29. Gao F, Guo Y, Yang S, Yu Y, Yu W. Fatigue properties of friction stir welded joint of titanium alloy. Mater Sci Eng A. 2020;793:139819.

    Article  Google Scholar 

  30. Nakazawa T, Sato YS, Kokawa H, Ishida K, Omori T, Tanaka K, et al. Friction stir welding of steels using a tool made of iridium-containing nickel base superalloy. In: Friction stir welding and processing VIII. Cham: Springer International Publishing; 2015. p. 77–82.

    Google Scholar 

  31. Lambiase F, Grossi V, Paoletti A. Friction stir joining of CFRP laminates with amorphous polymers: influence of processing speeds. J Manuf Process. 2020;55:186–97.

    Article  Google Scholar 

  32. Lohwasser D, Chen Z. Friction stir welding. 1st ed. Cambridge: Woodhead Publishing; 2009.

    Google Scholar 

  33. Trimble D, O’Donnell GE, Monaghan J. Characterisation of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J Manuf Process. 2015;17:141–50.

    Article  Google Scholar 

  34. Edwards PD, Ramulu M. Material flow during friction stir welding of Ti-6Al-4V. J Mater Process Tech. 2015;218:107–15.

    Article  Google Scholar 

  35. Gangwar K, Ramulu M. Friction stir welding of titanium alloys: a review. Mater Des. 2018;141:230–55.

    Article  Google Scholar 

  36. Carrasco JC, Berdugo I, Ospina R, Unfried SJ. Design optimization and fabrication of a thread tapered pin tool for friction stir welding. Visión electrónica. 2014;7(2):135–44.

    Google Scholar 

  37. Chen W, Wang W, Liu Z, Zhai X, Bian G, Zhang T, et al. Improvement in tensile strength of Mg/Al alloy dissimilar friction stir welding joints by reducing intermetallic compounds. J Alloys Compd. 2021;861:157942.

    Article  Google Scholar 

  38. Eivani AR, Mehdizade M, Chabok S, Zhou J. Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy. J Mater Res Technol. 2021;12:1946–57.

    Article  Google Scholar 

  39. Beygi R, Mehrizi MZ, Verdera D, Loureiro A. Influence of tool geometry on material flow and mechanical properties of friction stir welded Al-Cu bimetals. J Mater Process Technol. 2018;255:739–48.

    Article  Google Scholar 

  40. Ashok Raj J, Murthy HNS, Arulmani L, Santosh Kumar H. A review on friction stir welded aluminium copper specimens. Adv Mater Process Technol. 2022;8(2):1255–69.

    Google Scholar 

  41. Dabeer P, Shinde G. Perspective of friction stir welding tools. Mater Today Proc. 2018;5(5):13166–76.

    Article  Google Scholar 

  42. Sahlot P, Jha K, Dey GK, Arora A. Quantitative wear analysis of H13 steel tool during friction stir welding of Cu-0.8%Cr-0.1%Zr alloy. Wear. 2017;378–379:82–9.

    Article  Google Scholar 

  43. Fernandez GJ, Murr LE. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite. Mater Charact. 2004;52(1):65–75.

    Article  Google Scholar 

  44. Thomas WM, Braithwaite ABM, John R. SKEW-STIR™ TECHNOLOGY. In: 3rd International Symposium on Friction Stir Welding. Kobe (Japan); 2001.

    Google Scholar 

  45. Ferreira FB, Felice I, Brito I, Oliveira JP, Santos T. A review of orbital friction stir welding. Metals (Basel). 2023;13(6):1055.

    Article  Google Scholar 

  46. Martin J, Wei S. Friction stir welding technology for marine applications. In: Friction stir welding and processing VIII. Cham: Springer International Publishing; 2016. p. 219–26.

    Google Scholar 

  47. Curtis T, Widener C, West M, Jasthi B, Hovanski Y, Carlson B, et al. Friction stir scribe welding of dissimilar aluminum to steel lap joints. In: Friction stir welding and processing VIII. Cham: Springer International Publishing; 2016. p. 163–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Del Sol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Del Sol, I., Salguero, J., Batista, M., Astarita, A., Vázquez, J.M. (2024). Friction Stir Welding for Aerospace Alloys. In: Gürgen, S. (eds) Joining Operations for Aerospace Materials. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-031-59446-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59446-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59445-8

  • Online ISBN: 978-3-031-59446-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation