Part of the book series: Engineering Materials ((ENG.MAT.))

  • 39 Accesses

Abstract

The deterioration of water quality and the lack of drinking water are critical worldwide challenges. The primary sources of water contamination are dyeing activities, pharmaceutical waste, and pesticides, which account for 70% of water pollution. This facilitates the spreading of several waterborne diseases, including diarrhea, cancer, typhoid, skin irritation, etc. Several methods to reduce water pollution have been examined, considering their modes of operation and related costs. Using carbon-based materials as catalysts in these technique emerged as an effective water purification method. In this chapter, wastewater treatment approaches such as physical (adsorption, membrane filtration, and coagulation), chemical (advanced oxidation and ozonation), and biological have thoroughly discussed. In addition, a brief overview of influencing factors for wastewater treatment, including temperature, ionic strength, natural organic matter, and pH have been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma, D., Kansal, A.: Water quality analysis of River Yamuna using water quality index in the national capital territory, India (2000–2009). Appl. Water Sci. 1, 147–157 (2011). https://doi.org/10.1007/s13201-011-0011-4

    Article  CAS  Google Scholar 

  2. Barton, A.: Water in crisis—Sudan. Water Proj

    Google Scholar 

  3. Bănăduc, D., Simić, V., Cianfaglione, K., et al.: Freshwater as a sustainable resource and generator of secondary resources in the 21st century: stressors, threats, risks, management and protection strategies, and conservation approaches. Int. J. Environ. Res. Public Health 19, 16570 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  4. du Plessis, A.: Primary water quality challenges, contaminants and the world’s dirtiest places. In: Springer Water, pp. 79–114. Springer Nature (2019)

    Google Scholar 

  5. Boretti, A.: Rosa, L.: Reassessing the projections of the world water development report. NPJ Clean Water 2 (2019). https://doi.org/10.1038/s41545-019-0039-9

  6. Perveen, S., Amar-Ul-Haque: Drinking water quality monitoring, assessment and management in Pakistan: a review. Heliyon 9 (2023)

    Google Scholar 

  7. Allaq, A.A.A., Mahid, H.H., Yahya, E.B., et al.: Emerging drinking water borne diseases: a review on types, sources and health precaution. J. Pharm. Res. Int. 35, 1–17 (2023). https://doi.org/10.9734/jpri/2023/v35i317462

    Article  Google Scholar 

  8. Wato, T., Amare, M., Bonga, E., et al.: The agricultural water pollution and its minimization strategies—a review. J. Resour. Dev. Manag. 64, 2020 (2020). https://doi.org/10.7176/jrdm/64-02

    Article  Google Scholar 

  9. Zahoor, I., Mushtaq, A.: Water pollution from agricultural activities: a critical global review. Int. J. Chem. Biochem. Sci. 23, 164–176 (2023)

    Google Scholar 

  10. Saquib, S., Yadav, A.K., Prajapati, K.B.: Emerging pollutants in water and human health. In: Contamination of Water: Health Risk Assessment and Treatment Strategies, pp. 285–299 (2021)

    Google Scholar 

  11. Hunt, C.F., Voulvoulis, N.: Chemical pollution of the aquatic environment and health. Issues Environ. Sci. Technol. 39–69 (2021). https://doi.org/10.1039/9781839160431-00039

  12. Carrard, N., Foster, T., Willetts, J.: Groundwater as a source of drinking water in southeast Asia and the Pacific: a multi-country review of current reliance and resource concerns. Water (Switzerland) 11 (2019). https://doi.org/10.3390/w11081605

  13. Chowdhury, S., Balasubramanian, R.: Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interface Sci. 204, 35–56 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Chowdhary, P., Bharagava, R.N., Mishra, S., Khan, N.: Role of industries in water scarcity and its adverse effects on environment and human health. In: Environmental Concerns and Sustainable Development, pp. 235–256. Springer Singapore (2020)

    Google Scholar 

  15. Chen, B., Wang, M., Duan, M., et al.: In search of key: Protecting human health and the ecosystem from water pollution in China. J. Clean. Prod. 228, 101–111 (2019). https://doi.org/10.1016/j.jclepro.2019.04.228

    Article  CAS  Google Scholar 

  16. Wu, H., Gai, Z., Guo, Y., et al.: Does environmental pollution inhibit urbanization in China? A new perspective through residents’ medical and health costs. Environ. Res. 182 (2020). https://doi.org/10.1016/j.envres.2020.109128

  17. Parris, K.: Impact of agriculture on water pollution in OECD countries: recent trends and future prospects. Int. J. Water Resour. Dev. 27, 33–52 (2011). https://doi.org/10.1080/07900627.2010.531898

    Article  Google Scholar 

  18. Moss, B.: Water pollution by agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 659–666 (2008)

    Article  CAS  Google Scholar 

  19. Lai, W.: Pesticide use and health outcomes: Evidence from agricultural water pollution in China. J. Environ. Econ. Manage. 86, 93–120 (2017). https://doi.org/10.1016/j.jeem.2017.05.006

    Article  Google Scholar 

  20. **ao, J., Wang, L., Deng, L., **, Z.: Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total. Environ. 650, 2004–2012 (2019). https://doi.org/10.1016/j.scitotenv.2018.09.322

    Article  CAS  PubMed  Google Scholar 

  21. Wu, C., Maurer, C., Wang, Y., et al.: Water pollution and human health in China. Environ. Health Perspect. 107, 251–256 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. UstaoÄŸlu, F., Tepe, Y., TaÅŸ, B.: Assessment of stream quality and health risk in a subtropical Turkey river system: a combined approach using statistical analysis and water quality index. Ecol. Ind. 113 (2020). https://doi.org/10.1016/j.ecolind.2019.105815

  23. Halder, J., Islam, N.: Water pollution and its impact on the human health. J. Environ. Hum. 2, 36–46 (2015). https://doi.org/10.15764/eh.2015.01005

  24. Ahmed, S.N., Haider, W.: Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology 29 (2018)

    Google Scholar 

  25. Nguyen, C.H., Juang, R.S.: Efficient removal of cationic dyes from water by a combined adsorption-photocatalysis process using platinum-doped titanate nanomaterials. J. Taiwan Inst. Chem. Eng. 99, 166–179 (2019). https://doi.org/10.1016/j.jtice.2019.03.017

    Article  CAS  Google Scholar 

  26. Wawrzkiewicz, M., Polska-Adach, E., Hubicki, Z.: Application of titania based adsorbent for removal of acid, reactive and direct dyes from textile effluents. Adsorption (2019). https://doi.org/10.1007/s10450-019-00062-0

  27. Wong, J.K.H., Tan, H.K., Lau, S.Y., et al.: Potential and challenges of enzyme incorporated nanotechnology in dye wastewater treatment: a review. J. Environ. Chem. Eng. 7 (2019)

    Google Scholar 

  28. Yahya, N., Aziz, F., Jamaludin, N.A., et al.: A review of integrated photocatalyst adsorbents for wastewater treatment. J. Environ. Chem. Eng. 6, 7411–7425 (2018). https://doi.org/10.1016/j.jece.2018.06.051

    Article  CAS  Google Scholar 

  29. Rashid, R., Shafiq, I., Akhter, P., et al.: A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ. Sci. Pollut. Res. 28, 9050–9066 (2021)

    Article  CAS  Google Scholar 

  30. Samsami, S., Mohamadi, M., Sarrafzadeh, M.H., et al.: Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process. Saf. Environ. Prot. 143, 138–163 (2020)

    Article  CAS  Google Scholar 

  31. Foroutan, R., Mohammadi, R., Farjadfard, S., et al.: Characteristics and performance of Cd, Ni, and Pb bio-adsorption using Callinectes sapidus biomass: real wastewater treatment. Environ. Sci. Pollut. Res. 26, 6336–6347 (2019). https://doi.org/10.1007/s11356-018-04108-8

    Article  CAS  Google Scholar 

  32. Hu, H., Xu, K.: Physicochemical technologies for HRPs and risk control. In: High-Risk Pollutants in Wastewater, pp. 169–207. Elsevier (2019)

    Google Scholar 

  33. Tara, N., Siddiqui, S.I., Rathi, G., et al.: Nano-engineered adsorbent for the removal of dyes from water: a review. Curr. Anal. Chem. 16, 14–40 (2019). https://doi.org/10.2174/1573411015666190117124344

    Article  CAS  Google Scholar 

  34. Carvalho, J., Araujo, J., Castro, F.: Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste: an overview. Waste Biomass Valorization 2, 157–167 (2011)

    Article  Google Scholar 

  35. Sanghi, R., Bhattacharya, B.: Review on decolorisation of aqueous dye solutions by low cost adsorbents. Color. Technol. 118, 256–269 (2002). https://doi.org/10.1111/j.1478-4408.2002.tb00109.x

    Article  CAS  Google Scholar 

  36. Jadhav, A.J., Srivastava, V.C.: Adsorbed solution theory based modeling of binary adsorption of nitrobenzene, aniline and phenol onto granulated activated carbon. Chem. Eng. J. 229, 450–459 (2013). https://doi.org/10.1016/j.cej.2013.06.021

    Article  CAS  Google Scholar 

  37. Galán, J., Rodríguez, A., Gómez, J.M., et al.: Reactive dye adsorption onto a novel mesoporous carbon. Chem. Eng. J. 219, 62–68 (2013). https://doi.org/10.1016/j.cej.2012.12.073

    Article  CAS  Google Scholar 

  38. Gupta, V.K., Gupta, B., Rastogi, A., et al.: A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113. J. Hazard. Mater. 186, 891–901 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.091

    Article  CAS  PubMed  Google Scholar 

  39. Gupta, N., Kushwaha, A.K., Chattopadhyaya, M.C.: Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. 9, S707–S716 (2016). https://doi.org/10.1016/j.arabjc.2011.07.021

    Article  CAS  Google Scholar 

  40. Al-Amrani, W.A., Hanafiah, M.A.K.M., Mohammed, A.H.A.: A comprehensive review of anionic azo dyes adsorption on surface-functionalised silicas. Environ. Sci. Pollut. Res. 29, 76565–76610 (2022)

    Article  CAS  Google Scholar 

  41. Sumanjit, R.S., Mahajan, R.K.: Equilibrium, kinetics and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia. Arab. J. Chem. 9, S1464–S1477 (2016). https://doi.org/10.1016/j.arabjc.2012.03.013

    Article  CAS  Google Scholar 

  42. Auta, M., Hameed, B.H.: Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye. Chem. Eng. J. 171, 502–509 (2011). https://doi.org/10.1016/j.cej.2011.04.017

    Article  CAS  Google Scholar 

  43. Kumar, R., Ahmad, R.: Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 265, 112–118 (2011). https://doi.org/10.1016/j.desal.2010.07.040

    Article  CAS  Google Scholar 

  44. Zhang, W., Dong, L., Yan, H., et al.: Removal of methylene blue from aqueous solutions by straw based adsorbent in a fixed-bed column. Chem. Eng. J. 173, 429–436 (2011). https://doi.org/10.1016/j.cej.2011.08.001

    Article  CAS  Google Scholar 

  45. Belala, Z., Jeguirim, M., Belhachemi, M., et al.: Biosorption of basic dye from aqueous solutions by date stones and palm-trees waste: kinetic, equilibrium and thermodynamic studies. Desalination 271, 80–87 (2011). https://doi.org/10.1016/j.desal.2010.12.009

    Article  CAS  Google Scholar 

  46. Tunali Akar, S., Gorgulu, A., Akar, T., Celik, S.: Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: batch and continuous mode biosorption applications. Chem. Eng. J. 168, 125–133 (2011). https://doi.org/10.1016/j.cej.2010.12.049

    Article  CAS  Google Scholar 

  47. Moussavi, G., Khosravi, R.: The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste. Chem. Eng. Res. Des. 89, 2182–2189 (2011). https://doi.org/10.1016/j.cherd.2010.11.024

    Article  CAS  Google Scholar 

  48. Kara, I., Akar, S.T., Akar, T., Ozcan, A.: Dithiocarbamated Symphoricarpus albus as a potential biosorbent for a reactive dye. Chem. Eng. J. 211–212, 442–452 (2012). https://doi.org/10.1016/j.cej.2012.09.086

    Article  CAS  Google Scholar 

  49. Zhong, Q.Q., Yue, Q.Y., Li, Q., et al.: Preparation, characterization of modified wheat residue and its utilization for the anionic dye removal. Desalination 267, 193–200 (2011). https://doi.org/10.1016/j.desal.2010.09.025

    Article  CAS  Google Scholar 

  50. Elkady, M.F., Ibrahim, A.M., El-Latif, M.M.A.: Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads. Desalination 278, 412–423 (2011). https://doi.org/10.1016/j.desal.2011.05.063

    Article  CAS  Google Scholar 

  51. Yang, C., Xu, W., Nan, Y., et al.: Fabrication and characterization of a high performance polyimide ultrafiltration membrane for dye removal. J. Colloid Interface Sci. 562, 589–597 (2020). https://doi.org/10.1016/j.jcis.2019.11.075

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, Z., Liu, D., Cai, S., et al.: Dyes Removal by Composite Membrane of Sepiolite Impregnated Polysulfone Coated by Chemical Deposition of Tea Polyphenols. Elsevier (2020)

    Google Scholar 

  53. Ye, W., Ye, K., Lin, F., et al.: Enhanced fractionation of dye/salt mixtures by tight ultrafiltration membranes via fast bio-inspired co-deposition for sustainable textile wastewater management. Chem. Eng. J. 379 (2020). https://doi.org/10.1016/j.cej.2019.122321

  54. Ang, W.L., Mohammad. A.W.: State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod. 262 (2020)

    Google Scholar 

  55. Gautam, S., Saini, G.: Use of natural coagulants for industrial wastewater treatment. Glob. J. Environ. Sci. Manag. 6, 553–578 (2020). https://doi.org/10.22034/gjesm.2020.04.10

  56. Loloei, M., Nekonam, G., Alidadi, H., Kor, Y.: Study of the coagulation process in wastewater treatment of dairy industries. Int. J. Environ. Health Eng. 3, 12 (2014). https://doi.org/10.4103/2277-9183.132684

    Article  CAS  Google Scholar 

  57. Syam Babu, D., Anantha Singh, T.S., Nidheesh, P.V., Suresh Kumar, M.: Industrial wastewater treatment by electrocoagulation process. Sep. Sci. Technol. 55, 3195–3227 (2020)

    Article  CAS  Google Scholar 

  58. Amran, A.H., Zaidi, N.S., Muda, K., Loan, L.W.: Effectiveness of natural coagulant in coagulation process: a review. Int. J. Eng. Technol. 7, 34–37 (2018). https://doi.org/10.14419/ijet.v7i3.9.15269

  59. Zhao, Y.X., Gao, B.Y., Shon, H.K., et al.: The effect of second coagulant dose on the regrowth of flocs formed by charge neutralization and sweep coagulation using titanium tetrachloride (TiCl4). J. Hazard. Mater. 198, 70–77 (2011). https://doi.org/10.1016/j.jhazmat.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  60. Hogg, R.: Bridging flocculation by polymers. KONA Powder Part. J. 30, 3–14 (2012)

    Article  Google Scholar 

  61. Hjorth, M., Jørgensen, B.U.: Polymer flocculation mechanism in animal slurry established by charge neutralization. Water Res. 46, 1045–1051 (2012). https://doi.org/10.1016/j.watres.2011.11.078

    Article  CAS  PubMed  Google Scholar 

  62. Sukmana, H., Bellahsen, N., Pantoja, F., Hodur, C.: Adsorption and coagulation in wastewater treatment—review. Prog. Agric. Eng. Sci. 17, 49–68 (2021). https://doi.org/10.1556/446.2021.00029

    Article  Google Scholar 

  63. Shafiq, I., Hussain, M., Shehzad, N., et al.: The effect of crystal facets and induced porosity on the performance of monoclinic BiVO4 for the enhanced visible-light driven photocatalytic abatement of methylene blue. J. Environ. Chem. Eng. 7 (2019). https://doi.org/10.1016/j.jece.2019.103265

  64. Grande, G.A.: Treatment of wastewater from textile dyeing by ozonization (2015)

    Google Scholar 

  65. Ahmad, A., Mohd-Setapar, S.H., Chuong, C.S., et al.: Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 5, 30801–30818 (2015)

    Article  CAS  Google Scholar 

  66. Khatri, J., Nidheesh, P.V., Anantha Singh, T.S., Suresh Kumar, M.: Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem. Eng. J. 348, 67–73 (2018). https://doi.org/10.1016/j.cej.2018.04.074

    Article  CAS  Google Scholar 

  67. Glaze, W.H., Kang, J.W., Chapin, D.H.: The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 9, 335–352 (1987). https://doi.org/10.1080/01919518708552148

    Article  CAS  Google Scholar 

  68. Glaze, W.H.: Drinking-water treatment with ozone. Environ. Sci. Technol. 21, 224–230 (1987). https://doi.org/10.1021/es00157a001

    Article  CAS  PubMed  Google Scholar 

  69. Ikai, H., Nakamura, K., Shirato, M., et al.: Photolysis of hydrogen peroxide, an effective disinfection system via hydroxyl radical formation. Antimicrob. Agents Chemother. 54, 5086–5091 (2010). https://doi.org/10.1128/AAC.00751-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cho, M., Chung, H., Choi, W., Yoon, J.: Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ. Microbiol. 71, 270–275 (2005). https://doi.org/10.1128/AEM.71.1.270-275.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bixio, D., Wintgens, T., Ravazzini, A., et al.: Water reuse. In: Wastewater Quality Monitoring and Treatment, pp. 329–349 (2007)

    Google Scholar 

  72. Huang, C.P., Dong, C., Tang, Z.: Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Manag. 13, 361–377 (1993). https://doi.org/10.1016/0956-053X(93)90070-D

    Article  CAS  Google Scholar 

  73. Gottschalk, C., Libra, J.A., Saupe, A.: Ozonation of water and waste water: a practical guide to understanding ozone and its application (2008)

    Google Scholar 

  74. Tang, W.Z.: Physicochemical treatment of hazardous wastes (2016)

    Google Scholar 

  75. Pignatello, J.J., Oliveros, E., MacKay, A.: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36, 1–84 (2006)

    Article  CAS  Google Scholar 

  76. Deng, Y., Zhao, R.: Advanced oxidation processes (AOPs) in wastewater treatment. Curr. Pollut. Rep 1, 167–176 (2015). https://doi.org/10.1007/s40726-015-0015-z

  77. Raju, S., Carbery, M., Kuttykattil, A., et al.: Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Res. 173 (2020). https://doi.org/10.1016/j.watres.2020.115549

  78. Kumar, R., Sarmah, A.K., Padhye, L.P.: Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train. J. Environ. Manage. 233, 649–659 (2019). https://doi.org/10.1016/j.jenvman.2018.12.062

    Article  CAS  PubMed  Google Scholar 

  79. Barragán, B.E., Costa, C., Carmen Márquez, M.: Biodegradation of azo dyes by bacteria inoculated on solid media. Dye. Pigment. 75, 73–81 (2007). https://doi.org/10.1016/j.dyepig.2006.05.014

    Article  CAS  Google Scholar 

  80. Zhang, H., Feng, J., Chen, S., et al.: Geographical patterns of nirS gene abundance and nirS-type denitrifying bacterial community associated with activated sludge from different wastewater treatment plants. Microb. Ecol. 77, 304–316 (2019). https://doi.org/10.1007/s00248-018-1236-7

    Article  CAS  PubMed  Google Scholar 

  81. Sepehri, A., Sarrafzadeh, M.H., Avateffazeli, M.: Interaction between Chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio. J. Clean Prod. 247 (2020). https://doi.org/10.1016/j.jclepro.2019.119164

  82. Thatai, S., Verma, R., Khurana, P., et al.: Water quality standards, its pollution and treatment methods. In: A New Generation Material Graphene: Applications in Water Technology, pp. 21–42. Springer International Publishing (2018)

    Google Scholar 

  83. Bernard, O., Hadj-Sadok, Z., Dochain, D., et al.: Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75, 424–438 (2001). https://doi.org/10.1002/bit.10036

    Article  CAS  PubMed  Google Scholar 

  84. Bernet, N., Delgenes, N., Akunna, J.C., et al.: Combined anaerobic-aerobic SBR for the treatment of piggery wastewater. Water Res. 34, 611–619 (2000). https://doi.org/10.1016/S0043-1354(99)00170-0

    Article  CAS  Google Scholar 

  85. Fux, C., Boehler, M., Huber, P., et al.: Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J. Biotechnol. 99, 295–306 (2002). https://doi.org/10.1016/S0168-1656(02)00220-1

    Article  CAS  PubMed  Google Scholar 

  86. Talarposhti, A.M., Donnelly, T., Anderson, G.K.: Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor. Water Res. 35, 425–432 (2001). https://doi.org/10.1016/S0043-1354(00)00280-3

    Article  CAS  Google Scholar 

  87. Van Der Zee, F.P., Villaverde, S.: Combined anaerobic-aerobic treatment of azo dyes—a short review of bioreactor studies. Water Res. 39, 1425–1440 (2005)

    Article  PubMed  Google Scholar 

  88. Venkata Mohan, S., Lalit Babu, V., Sarma, P.N.: Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzyme Microb. Technol. 41, 506–515 (2007). https://doi.org/10.1016/j.enzmictec.2007.04.007

    Article  CAS  Google Scholar 

  89. Chen, H., Zhao, J., Dai, G., et al.: Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination 262, 174–182 (2010). https://doi.org/10.1016/j.desal.2010.06.006

    Article  CAS  Google Scholar 

  90. Xu, X., Yang, Y., Wang, G., et al.: Removal of heavy metals from industrial sludge with new plant–based washing agents. Chemosphere 246 (2020). https://doi.org/10.1016/j.chemosphere.2020.125816

  91. Tirtom, V.N., Dinçer, A.: Effective removal of heavy metals from an aqueous solution with poly(N-vinylimidazole-acrylamide) hydrogels. Sep. Sci. Technol. 56, 912–924 (2021). https://doi.org/10.1080/01496395.2020.1735434

    Article  CAS  Google Scholar 

  92. Moussavi, G., Barikbin, B.: Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. Chem. Eng. J. 162, 893–900 (2010). https://doi.org/10.1016/j.cej.2010.06.032

    Article  CAS  Google Scholar 

  93. Alothman, Z.A., Bahkali, A.H., Khiyami, M.A., et al.: Low cost biosorbents from fungi for heavy metals removal from wastewater. Sep. Sci. Technol. 55, 1766–1775 (2020). https://doi.org/10.1080/01496395.2019.1608242

    Article  CAS  Google Scholar 

  94. Anbalagan, K., Kumar, M.M., Sudarsan, J.S., Nithiyanantham, S.: Removal of heavy metal ions from industrial wastewater using magnetic nanoparticles. J. Eng. Res. 10, 59–71 (2022). https://doi.org/10.36909/jer.6924

  95. Hu, X., Hu, Y., Xu, G., et al.: Green synthesis of a magnetic $β$-cyclodextrin polymer for rapid removal of organic micro-pollutants and heavy metals from dyeing wastewater. Environ. Res. 180 (2020). https://doi.org/10.1016/j.envres.2019.108796

  96. Musso, T.B., Parolo, M.E., Pettinari, G.: pH, ionic strength, and ion competition effect on Cu(II) and Ni(II) sorption by a Na-bentonite used as liner material. Polish. J. Environ. Stud. 28, 2299–2310 (2019). https://doi.org/10.15244/pjoes/84922

  97. Joseph, L., Jun, B.M., Flora, J.R.V., et al.: Removal of heavy metals from water sources in the develo** world using low-cost materials: a review. Chemosphere 229, 142–159 (2019)

    Article  CAS  PubMed  Google Scholar 

  98. Villarín, M.C., Merel, S.: Paradigm shifts and current challenges in wastewater management. J. Hazard Mater. 390 (2020). https://doi.org/10.1016/j.jhazmat.2020.122139

  99. Ma, J., Li, F., Qian, T., et al.: Natural organic matter resistant powder activated charcoal supported titanate nanotubes for adsorption of Pb(II). Chem. Eng. J. 315, 191–200 (2017). https://doi.org/10.1016/j.cej.2017.01.029

    Article  CAS  Google Scholar 

  100. Lin, L., Xu, X., Papelis, C., Xu, P.: Innovative use of drinking water treatment solids for heavy metals removal from desalination concentrate: synergistic effect of salts and natural organic matter. Chem. Eng. Res. Des. 120, 231–239 (2017). https://doi.org/10.1016/j.cherd.2017.02.009

    Article  CAS  Google Scholar 

  101. Ncube, P., Pidou, M., Stephenson, T., et al.: Consequences of pH change on wastewater depth filtration using a multimedia filter. Water Res. 128, 111–119 (2018). https://doi.org/10.1016/j.watres.2017.10.040

    Article  CAS  PubMed  Google Scholar 

  102. Taşar, Ş, Kaya, F., Özer, A.: Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J. Environ. Chem. Eng. 2, 1018–1026 (2014). https://doi.org/10.1016/j.jece.2014.03.015

    Article  CAS  Google Scholar 

  103. Es-Sahbany, H., Berradi, M., Nkhili, S., et al.: Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay. In: Materials Today: Proceedings, pp. 866–875 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ikram .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikram, M., Haider, A., Moeen, S., Haider, J. (2024). Dye Degradation Application. In: Carbon-Based Nanomaterials for Environmental Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-59390-1_3

Download citation

Publish with us

Policies and ethics

Navigation