Gaussian Quantum-Behaved PSO Strategy for Lithium Battery Model Optimization

  • Conference paper
  • First Online:
Quantum Computing: Applications and Challenges (QSAC 2023)

Abstract

The integration of quantum-inspired techniques into optimization algorithms allows for enhanced exploration of complex parameter spaces, enabling efficient convergence toward optimal solutions. This article presents the application of Gaussian Quantum-behaved Particle Swarm Optimization (GQPSO) strategy, tailored for optimizing the parameters of the Lithium Battery Extended Thevenin model. Inspired by the principles of swarm intelligence and quantum mechanics, the GQPSO leverages Gaussian distributions to enhance the exploration of parameter spaces, capitalizing on the advantages offered by quantum-inspired optimization techniques. Through tests on high-accuracy data, the effectiveness of the GQPSO strategy is demonstrated. The optimized Lithium Battery Extended Thevenin model showcases remarkable accuracy, with an RMSE of 2.06116086e−02 and a standard deviation of 1.27510624e−02. The GQPSO strategy’s exceptional performance showcases the advantages of combining quantum mechanics’ principles and Gaussian distributions with swarm intelligence for accurate and efficient lithium battery modeling, paving the way for improved energy storage system applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Bülow, F., Meisen, T.: A review on methods for state of health forecasting of lithium-ion batteries applicable in real-world operational conditions. J. Energy Storage 57, 105978 (2023). https://doi.org/10.1016/J.EST.2022.105978

    Article  Google Scholar 

  2. Elmahallawy, M., Elfouly, T., Alouani, A., Massoud, A.M.: A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction. IEEE Access 10, 119040–119070 (2022). https://doi.org/10.1109/ACCESS.2022.3221137

    Article  Google Scholar 

  3. Merrouche, W., et al.: Improved model and simulation tool for dynamic SOH estimation and life prediction of batteries used in PV systems. Simul. Model. Pract. Theory 119, 102590 (2022). https://doi.org/10.1016/j.simpat.2022.102590

    Article  Google Scholar 

  4. Kadam, P.P., Kadam, S.: Quantum optimization techniques and it’s comparison with classical optimization. In: Senjyu, T., So-In, C., Joshi, A. (eds.) SMART 2023. LNCS, vol. 645, pp. 639–647. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-0769-4_55

    Chapter  Google Scholar 

  5. Hakemi, S., Houshmand, M., KheirKhah, E., Hosseini, S.A.: A review of recent advances in quantum-inspired metaheuristics (2022). https://doi.org/10.1007/s12065-022-00783-2

  6. Gharehchopogh, F.S.: Quantum-inspired metaheuristic algorithms: comprehensive survey and classification. Artif. Intell. Rev. (2023). https://doi.org/10.1007/s10462-022-10280-8

  7. Reddy, K., Saha, A.K.: A review of swarm-based metaheuristic optimization techniques and their application to doubly fed induction generator (2022). https://doi.org/10.1016/j.heliyon.2022.e10956

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 - International Conference on Neural Networks, pp. 1942–1948. IEEE (1995). https://doi.org/10.1109/ICNN.1995.488968

  9. Gad, A.G.: Particle swarm optimization algorithm and its applications: a systematic review. Arch. Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-021-09694-4

  10. Yang, S., Wang, M., Jiao, L.: A quantum particle swarm optimization. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), pp. 320–324. IEEE (2004). https://doi.org/10.1109/CEC.2004.1330874

  11. Zhang, Y., Lyden, S., De La Barra, B.A.L., Haque, M.E.: Optimization of Tremblay’s battery model parameters for plug-in hybrid electric vehicle applications. In: 2017 Australasian Universities Power Engineering Conference, AUPEC 2017 (2018). https://doi.org/10.1109/AUPEC.2017.8282405

  12. Solomon, O.O., Zheng, W., Chen, J., Qiao, Z.: State of charge estimation of Lithium-ion battery using an improved fractional-order extended Kalman filter. J. Energy Storage (2022). https://doi.org/10.1016/j.est.2022.104007

  13. Service, T.C.: A No Free Lunch theorem for multi-objective optimization. Inf. Process. Lett. 110, 917–923 (2010). https://doi.org/10.1016/j.ipl.2010.07.026

  14. Joyce, T., Herrmann, J.M.: A review of no free lunch theorems, and their implications for metaheuristic optimisation. In: Yang, X.-S. (ed.) Nature-Inspired Algorithms and Applied Optimization. SCI, vol. 744, pp. 27–51. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67669-2_2

    Chapter  Google Scholar 

  15. Haddad, S., Lekouaghet, B., Benghanem, M., Soukkou, A., Rabhi, A.: Parameter estimation of solar modules operating under outdoor operational conditions using artificial hummingbird algorithm. IEEE Access (2022). https://doi.org/10.1109/ACCESS.2022.3174222

  16. Lekouaghet, B., Khelifa, M.A., Boukabou, A.: Adolescent identity search algorithm for parameter extraction in photovoltaic solar cells and modules. J. Comput. Electron. (2022). https://doi.org/10.1007/s10825-022-01881-1

  17. dos Santos Coelho, L.: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst. Appl. 37, 1676–1683 (2010). https://doi.org/10.1016/j.eswa.2009.06.044

  18. dos Santos Coelho, L.: A quantum particle swarm optimizer with chaotic mutation operator. Chaos Solitons Fractals (2008). https://doi.org/10.1016/j.chaos.2006.10.028

  19. Plett, G.L.: Battery Management Systems: Equivalent-Circuit Methods (2016)

    Google Scholar 

  20. Plett, G.L.: Battery Management Systems, Volume I: Battery Modeling. Artech (2015)

    Google Scholar 

  21. Merrouche, W., Lekouaghet, B., Bouguenna, E., Himeur, Y.: Parameter estimation of ECM model for Li-ion battery using the weighted mean of vectors algorithm. J. Energy Storage 76, 109891 (2024). https://doi.org/10.1016/j.est.2023.109891

    Article  Google Scholar 

  22. Merrouche, W., Lekouaghet, B., Bouguenna, E.: Artificial search algorithm for parameters optimization of Li-ion battery electrical model. In: 2023 International Conference on Decision Aid Sciences and Applications (DASA), pp. 17–22. IEEE (2023). https://doi.org/10.1109/DASA59624.2023.10286632

  23. Lekouaghet, B., Merrouche, W., Bouguenna, E., Himeur, Y.: Identifying the unknown parameters of ECM model for Li-ion battery using Rao-1 algorithm. In: The 4th International Electronic Conference on Applied Sciences session Energy, Environmental and Earth Science. MDPI (2023). https://doi.org/10.3390/ASEC2023-15343

  24. Merrouche, W., Gaci, I., Ould-Amrouche, S., Boubezari, A.: PWM buck converter used in PV controller. In: Proceedings of 2019 7th International Renewable and Sustainable Energy Conference, IRSEC 2019. pp. 1–6. IEEE (2019). https://doi.org/10.1109/IRSEC48032.2019.9078250

  25. Li, W., Rentemeister, M., Badeda, J., Jöst, D., Schulte, D., Sauer, D.U.: Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation. J. Energy Storage. 30, 101557 (2020). https://doi.org/10.1016/j.est.2020.101557

    Article  Google Scholar 

  26. Li, W., Chen, J., Quade, K., Luder, D., Gong, J., Sauer, D.U.: Battery degradation diagnosis with field data, impedance-based modeling and artificial intelligence. Energy Storage Mater. 53, 391–403 (2022). https://doi.org/10.1016/j.ensm.2022.08.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Merrouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merrouche, W., Lekouaghet, B., Bouguenna, E. (2024). Gaussian Quantum-Behaved PSO Strategy for Lithium Battery Model Optimization. In: Drias, H., Yalaoui, F. (eds) Quantum Computing: Applications and Challenges. QSAC 2023. Information Systems Engineering and Management, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-59318-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59318-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59317-8

  • Online ISBN: 978-3-031-59318-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation