An Overview of Quantum Key Agreement Protocols

  • Conference paper
  • First Online:
Quantum Computing: Applications and Challenges (QSAC 2023)

Part of the book series: Information Systems Engineering and Management ((ISEM,volume 2))

  • 54 Accesses

Abstract

Quantum Key Agreement (QKA) stands as a pivotal protocol in quantum cryptography, facilitating the shared creation of a secret key among participants over an insecure communication medium. This study explores the complex theoretical foundations and intricate mathematical frameworks integral to QKA. Additionally, it presents a structured analysis and categorization of various multi-party Quantum Key Agreement mechanisms, an increasingly significant topic in the quantum computing era. Each approach is scrutinized for its strengths and weaknesses, providing a comprehensive comparative study that covers their real-world applications and the unique challenges they face. Striking a balance between detailed technical exposition and perceptive observations on the broader implications of these quantum technologies, this paper offers a well-rounded view on advancing secure quantum communication systems. The goal of this research is to furnish readers with a thorough understanding of QKA principles and an insightful perspective on the diverse opportunities and obstacles presented by different multi-party QKA frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diffie, W., Hellman, M.: New directions in cryptography. In: Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman, pp. 365-390 (2022)

    Google Scholar 

  2. Ingemarsson, I., Tang, D., Wong, C.: A conference key distribution system. IEEE Trans. Inf. Theory 28, 714–720 (1982)

    Article  MathSciNet  Google Scholar 

  3. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. In: De Santis, A. (ed.) Advances in Cryptology - EUROCRYPT’94. Lecture Notes in Computer Science, vol. 950, pp. 275–286. Springer, Berlin (1995). https://doi.org/10.1007/BFb0053443

    Chapter  Google Scholar 

  4. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11, 769–780 (2000)

    Article  Google Scholar 

  5. Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  Google Scholar 

  6. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Ar**v Preprint: ar**v:2003.06557 (2020)

  7. Bennett, C.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  Google Scholar 

  8. Bennett, C., Wiesner, S.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  Google Scholar 

  9. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  MathSciNet  Google Scholar 

  10. Hillery, M., BuĹľek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  Google Scholar 

  11. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  Google Scholar 

  12. Deng, F., Long, G., Liu, X.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  Google Scholar 

  13. Tseng, H., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  Google Scholar 

  14. Sun, Z., Long, D.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)

    Article  MathSciNet  Google Scholar 

  15. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  Google Scholar 

  16. Tajima, A., Tanaka, A., Maeda, W., Takahashi, S., Tomita, A.: Practical quantum cryptosystem for metro area applications. IEEE J. Sel. Top. Quantum Electron. 13, 1031–1038 (2007)

    Article  Google Scholar 

  17. Zhou, N., Zeng, G., **ong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1 (2004)

    Article  Google Scholar 

  18. Chong, S., Tsai, C., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states’’. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  Google Scholar 

  19. Chong, S., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  Google Scholar 

  20. Huang, W., Wen, Q., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  MathSciNet  Google Scholar 

  21. Huang, W., Su, Q., Wu, X., Li, Y., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891–2901 (2014)

    Article  Google Scholar 

  22. Shen, D., Ma, W., Wang, L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)

    Article  MathSciNet  Google Scholar 

  23. Liu, B., Gao, F., Huang, W., Wen, Q.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  MathSciNet  Google Scholar 

  24. Yin, X., Ma, W., Shen, D., Wang, L.: Three-party quantum key agreement with Bell states. Acta Phys. Sinica 62 (2013)

    Google Scholar 

  25. He, Y., Ma, W.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  MathSciNet  Google Scholar 

  26. Xu, G., Wen, Q., Gao, F., Qin, S.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  MathSciNet  Google Scholar 

  27. Shi, R., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  MathSciNet  Google Scholar 

  28. Yin, X., Ma, W., Liu, W.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  Google Scholar 

  29. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on “multiparty quantum key agreement with single particles’’. Quantum Inf. Process. 12, 3411–3420 (2013)

    Article  MathSciNet  Google Scholar 

  30. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zhu, Z., Hu, A., Fu, A.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14, 4245–4254 (2015)

    Article  MathSciNet  Google Scholar 

  32. Sun, Z., Yu, J., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  MathSciNet  Google Scholar 

  33. Sun, Z., Zhang, C., Wang, P., Yu, J., Zhang, Y., Long, D.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  Google Scholar 

  34. Huang, W., Wen, Q., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13, 1651–1657 (2014)

    Article  MathSciNet  Google Scholar 

  35. Liu, B., **ao, D., Jia, H., Liu, R.: Collusive attacks to “circle-type’’ multi-party quantum key agreement protocols. Quantum Inf. Process. 15, 2113–2124 (2016)

    Article  MathSciNet  Google Scholar 

  36. Chen, K., Chang, Z., Zeng, G., Chou, Y.: Multiparty quantum key agreement with GHZ state. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp. 1589-1594 (2015) Oct 2017

    Google Scholar 

  37. Xu, Y., Wang, C., Cheng, K., Zhu, H.: A novel three-party mutual authentication quantum key agreement protocol with GHZ states. Int. J. Theor. Phys. 61, 245 (2022)

    Article  MathSciNet  Google Scholar 

  38. Eftekhari, S., Nikooghadam, M., Rafighi, M.: Security-enhanced three-party pairwise secret key agreement protocol for fog-based vehicular ad-hoc communications. Veh. Commun. 28, 100306 (2021)

    Google Scholar 

  39. Altaf, I., Arslan Akram, M., Mahmood, K., Kumari, S., **ong, H., Khurram Khan, M.: A novel authentication and key-agreement scheme for satellite communication network. Trans. Emerg. Telecommun. Technol. 32, e3894 (2021)

    Article  Google Scholar 

  40. Yang, H., Lu, S., Zhu, J., Wu, J., Zhou, Q., Li, T.: A tree-type multiparty quantum key agreement protocol against collusive attacks. Int. J. Theor. Phys. 62, 7 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssouf Achouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Achouri, Y., Djellab, R., Hamouid, K. (2024). An Overview of Quantum Key Agreement Protocols. In: Drias, H., Yalaoui, F. (eds) Quantum Computing: Applications and Challenges. QSAC 2023. Information Systems Engineering and Management, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-59318-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59318-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59317-8

  • Online ISBN: 978-3-031-59318-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation