Potential Contribution of Retrotransposons to Learning and Memory

  • Chapter
  • First Online:
Epigenetics in Biological Communication
  • 85 Accesses

Abstract

Increasing evidence indicates that insertion of transposable elements, particularly retrotransposons, may play a critical role in learning and memory. Here, I review the evidence that retrotransposition is triggered in neurons by learning-related events and discuss the implications of this phenomenon for understanding how memory is encoded.

Preparation of this paper was supported in part by NSF Award IOS 2050850 to DLG. The author thanks Joseph Alzagatiti for helpful comments on the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WC, Jones OD, Glanzman DL (2019) Is plasticity of synapses the mechanism of long-term memory storage? NPJ Sci Learn 4:1–10

    Article  Google Scholar 

  • Akhlaghpour H (2022) An RNA-based theory of natural universal computation. J Theor Biol 537:110984

    Article  CAS  Google Scholar 

  • Alberini CM (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol Rev 89:121–145

    Article  CAS  Google Scholar 

  • Ashburner M et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  • Bachiller S, del Pozo-Martín Y, Carrión ÁM (2017) L1 retrotransposition alters the hippocampal genomic landscape enabling memory formation. Brain Behav Immun 64:65–70

    Article  CAS  Google Scholar 

  • Baillie JK et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534

    Article  CAS  Google Scholar 

  • Banuelos-Sanchez G et al (2019) Synthesis and characterization of specific reverse transcriptase inhibitors for mammalian LINE-1 retrotransposons. Cell Chem Biol 26:1095–1109.e1014

    Article  CAS  Google Scholar 

  • Bédécarrats A, Chen S, Pearce K, Cai D, Glanzman DL (2018) RNA from trained Aplysia can induce an epigenetic engram for long-term sensitization in untrained Aplysia. Eneuro 5:ENEURO.0038-0018.2018

    Article  Google Scholar 

  • Bedrosian TA, Quayle C, Novaresi N, Gage FH (2018) Early life experience drives structural variation of neural genomes in mice. Science 359:1395–1399

    Article  CAS  Google Scholar 

  • Blackiston DJ, Shomrat T, Levin M (2015) The stability of memories during brain remodeling: A perspective. Commun Integr Biol 8:e1073424

    Google Scholar 

  • Bodea GO, McKelvey EGZ, Faulkner GJ (2018) Retrotransposon-induced mosaicism in the neural genome. Open Biol 8:180074

    Article  Google Scholar 

  • Bourque G et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199

    Article  CAS  Google Scholar 

  • Brouha B et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280–5285

    Article  CAS  Google Scholar 

  • Bundo M et al (2014) Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81:306–313

    Article  CAS  Google Scholar 

  • Cai D, Pearce K, Chen S, Glanzman DL (2012) Reconsolidation of long-term memory in Aplysia. Curr Biol 22:1783–1788

    Article  CAS  Google Scholar 

  • Calderwood SK (2016) A critical role for topoisomerase IIb and DNA double strand breaks in transcription. Transcription 7:75–83

    Article  CAS  Google Scholar 

  • Chen S et al (2014) Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. elife 3:e03896

    Article  Google Scholar 

  • Chersi F, Burgess N (2015) The cognitive architecture of spatial navigation: hippocampal and striatal contributions. Neuron 88:64–77

    Article  CAS  Google Scholar 

  • Chinwalla AT et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  CAS  Google Scholar 

  • Coufal NG et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131

    Article  CAS  Google Scholar 

  • Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychol Bull 96:518–559

    Article  CAS  Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465

    Article  CAS  Google Scholar 

  • Eickbush TH, Malik HS (2007) Origins and evolution of retrotransposons. Mob DNA ii:1111–1144

    Article  Google Scholar 

  • Elbarbary RA, Lucas BA, Maquat LE (2016) Retrotransposons as regulators of gene expression. Science 351:aac7247

    Article  Google Scholar 

  • Evering TH, Marston JL, Gan L, Nixon DF (2023) Transposable elements and Alzheimer’s disease pathogenesis. Trends Neurosci 46:170–172

    Article  CAS  Google Scholar 

  • Evrony GD et al (2015) Cell lineage analysis in human brain using endogenous retroelements. Neuron 85:49–59

    Article  CAS  Google Scholar 

  • Faulkner GJ, Billon V (2018) L1 retrotransposition in the soma: a field jum** ahead. Mobile DNA 9:22

    Article  Google Scholar 

  • Feng Q, Moran JV, Kazazian HH, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  CAS  Google Scholar 

  • Fischer A (2014) Epigenetic memory: the Lamarckian brain. EMBO J 33:945–967

    Article  CAS  Google Scholar 

  • Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304:881–883

    Article  CAS  Google Scholar 

  • Gallistel CR (2017) The coding question. Trends Cogn Sci 21:498–508

    Article  CAS  Google Scholar 

  • Gallistel CR (2020) The physical basis of memory. Cognition 213:104533

    Article  Google Scholar 

  • Garza R et al (2023) LINE-1 retrotransposons drive human neuronal transcriptome complexity and functional diversification. Sci Adv 9:eadh9543

    Article  CAS  Google Scholar 

  • Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393

    Article  CAS  Google Scholar 

  • Gershman SJ (2023) The molecular memory code and synaptic plasticity: a synthesis. Biosystems 224:104825

    Article  CAS  Google Scholar 

  • Ginsburg S, Jablonka E (2009) Epigenetic learning in non-neural organisms. J Biosci 34:633–646

    Article  CAS  Google Scholar 

  • Gold AR, Glanzman DL (2021) The central importance of nuclear mechanisms in the storage of memory. Biochem Biophys Res Commun 564:103–113

    Article  CAS  Google Scholar 

  • Gräff J et al (2014) Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 156:261–276

    Article  Google Scholar 

  • Grundman J, Spencer B, Sarsoza F, Rissman RA (2021) Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression. PLoS One 16:e0251611

    Article  CAS  Google Scholar 

  • Han JS (2010) Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions. Mobile DNA 1:15

    Article  Google Scholar 

  • Holliday R (1999) Is there an epigenetic component in long-term memory? J Theor Biol 200:339–341

    Article  CAS  Google Scholar 

  • Hyden H, Egyhazi E (1962) Nuclear RNA changes of nerve cells during a learning experiment in rats. Proc Natl Acad Sci USA 48:1366–1373

    Article  CAS  Google Scholar 

  • Jahangir M, Li L, Zhou JS, Lang B, Wang XP (2022) L1 retrotransposons: a potential endogenous regulator for schizophrenia. Front Genet 13:878508

    Article  CAS  Google Scholar 

  • Johansson F, Jirenhed DA, Rasmussen A, Zucca R, Hesslow G (2014) Memory trace and timing mechanism localized to cerebellar Purkinje cells. Proc Natl Acad Sci USA 111:14930–14934

    Article  CAS  Google Scholar 

  • Jones RB et al (2008) Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS One 3:e1547

    Article  Google Scholar 

  • Jovasevic V et al (2024) Formation of memory assemblies through the DNA-sensing TLR9 pathway. Nature 628:145–153

    Google Scholar 

  • Kaletsky R et al (2020) C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 586:445–451

    Article  CAS  Google Scholar 

  • Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163–186

    Google Scholar 

  • Kauer JA, Malenka RC, Nicoll RA (1988) NMDA application potentiates synaptic transmission in the hippocampus. Nature 334:250–252

    Article  CAS  Google Scholar 

  • Kim Y-J, Lee J, Han K (2012) Transposable elements: no more ‘junk DNA’. Genomics Inform 10:226–233

    Article  Google Scholar 

  • Kumagai Y, Takeuchi O, Akira S (2008) TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev 60:795–804

    Google Scholar 

  • Lander E et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  Google Scholar 

  • Lee MH et al (2018) Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563:639–645

    Google Scholar 

  • Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6:108–118

    Article  CAS  Google Scholar 

  • Li X et al (2019) The DNA repair-associated protein Gadd45gamma regulates the temporal coding of immediate early gene expression within the prelimbic prefrontal cortex and is required for the consolidation of associative fear memory. J Neurosci 39:970–983

    Article  CAS  Google Scholar 

  • Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13:169–182

    Article  CAS  Google Scholar 

  • Liu S et al (2016) Inverse changes in L1 retrotransposons between blood and brain in major depressive disorder. Sci Rep 6:37530

    Article  CAS  Google Scholar 

  • Madabhushi R et al (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161:1592–1605

    Article  CAS  Google Scholar 

  • Marshall P, Bredy TW (2016) Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory? NPJ Sci Learn 1:1–8

    Article  Google Scholar 

  • Martin SL (2006) The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition. J Biomed Biotechnol 2006:45621

    Google Scholar 

  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    Article  CAS  Google Scholar 

  • Mayford M, Siegelbaum SA, Kandel ER (2012) Synapses and memory storage. Cold Spring Harb Perspect Biol 4:a005751

    Article  Google Scholar 

  • McClintock B (1956) Controlling elements and the gene. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, pp 197–216

    Google Scholar 

  • McConnell JV (1962) Memory transfer through cannibalism in planarians. J Neuropsychiatr 3(Suppl. 1):S42

    Google Scholar 

  • McConnell MJ et al (2017) Intersection of diverse neuronal genomes and neuropsychiatric disease: the brain somatic mosaicism network. Science 356:eaal1641

    Article  Google Scholar 

  • Monsey MS, Ota KT, Akingbade IF, Hong ES, Schafe GE (2011) Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One 6:e19958

    Article  CAS  Google Scholar 

  • Moore RS et al (2021) The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 184(4697–4712):e4618

    Google Scholar 

  • Muotri AR et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910

    Article  CAS  Google Scholar 

  • Muotri AR, Zhao C, Marchetto MC, Gage FH (2009) Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19:1002–1007

    Article  CAS  Google Scholar 

  • Muotri AR et al (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    Article  CAS  Google Scholar 

  • Myers SJ, et al. (2019) Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res 8

    Google Scholar 

  • Nader K (2015) Reconsolidation and the dynamic nature of memory. Cold Spring Harb Perspect Biol 7:a021782

    Article  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    Article  CAS  Google Scholar 

  • Pearce K, Cai D, Roberts AC, Glanzman DL (2017) Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. elife 6:e18299

    Article  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  Google Scholar 

  • Rajasethupathy P et al (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149:693–707

    Article  CAS  Google Scholar 

  • Rechavi O, Lev I (2017) Principles of transgenerational small RNA inheritance in Caenorhabditis elegans. Curr Biol 27:R720–R730

    Article  CAS  Google Scholar 

  • Richardson SR, Morell S, Faulkner GJ (2014) L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet 48:1–27

    Article  CAS  Google Scholar 

  • Roy DS et al (2016) Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531:508–512

    Article  CAS  Google Scholar 

  • Saeliw T et al (2022) LINE-1 and Alu methylation signatures in autism spectrum disorder and their associations with the expression of autism-related genes. Sci Rep 12:13970

    Article  CAS  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  CAS  Google Scholar 

  • Shanbhag NM et al (2019) Early neuronal accumulation of DNA double strand breaks in Alzheimer’s disease. Acta Neuropathol Commun 7:77

    Article  Google Scholar 

  • Shepherd JD, Bear MF (2011) New views of arc, a master regulator of synaptic plasticity. Nat Neurosci 14:279–284

    Article  CAS  Google Scholar 

  • Singer T, McConnell MJ, Marchetto MC, Coufal NG, Gage FH (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33:345–354

    Article  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  CAS  Google Scholar 

  • Stott RT, Kritsky O, Tsai LH (2021) Profiling DNA break sites and transcriptional changes in response to contextual fear learning. PLoS One 16:e0249691

    Article  CAS  Google Scholar 

  • Suarez NA, Macia A, Muotri AR (2018) LINE-1 retrotransposons in healthy and diseased human brain. Dev Neurobiol 78:434–455

    Article  Google Scholar 

  • Suberbielle E et al (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci 16:613–621

    Article  CAS  Google Scholar 

  • Sun X, Lin Y (2016) Npas4: linking neuronal activity to memory. Trends Neurosci 39:264–275

    Article  CAS  Google Scholar 

  • Tubio JMC et al (2014) Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345:1251343

    Article  Google Scholar 

  • Ungar G (1968) Molecular mechanisms in learning. Perspect Biol Med 11:217–232

    Article  CAS  Google Scholar 

  • Upton KR et al (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161:228–239

    Article  CAS  Google Scholar 

  • Wossidlo M et al (2010) Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J 29:1877–1888

    Article  CAS  Google Scholar 

  • **ao-Jie L, Hui-Ying X, Qi X, Jiang X, Shi-Jie M (2016) LINE-1 in cancer: multifaceted functions and potential clinical implications. Genet Med 18:431–439

    Article  Google Scholar 

  • Zhang WJ et al (2021) The retrotransposition of L1 is involved in the reconsolidation of contextual fear memory in mice. CNS Neurol Disord Drug Targets 20:273–284

    Article  CAS  Google Scholar 

  • Zovkic IB, Guzman-Karlsson MC, Sweatt JD (2013) Epigenetic regulation of memory formation and maintenance. Learn Mem 20:61–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Glanzman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glanzman, D.L. (2024). Potential Contribution of Retrotransposons to Learning and Memory. In: Witzany, G. (eds) Epigenetics in Biological Communication. Springer, Cham. https://doi.org/10.1007/978-3-031-59286-7_12

Download citation

Publish with us

Policies and ethics

Navigation