Green Synthesis of Organic Nanomaterials and Their Applications

  • Chapter
  • First Online:
Biogenic Wastes-Enabled Nanomaterial Synthesis

Abstract

Nanotechnology is a rapidly evolving technology that is still in its infancy, but holds immense potential due to its various applications. It entails develo** and use of materials that have dimensions inside the brackets of 1–100 nanometers. Nowadays, a wide range of physicochemical techniques are employed to synthesize organic nanoparticles (NPs). For many years, scientists have been experimenting with various synthetic approaches to create organic nanoparticles. When compared to chemical synthesis that utilizes dangerous diluents, elevated pressure, energy, and thermochemical methods, the green nanoparticle production technique is a more straightforward, efficient, and eco-friendly alternative. Sustainable process offers ecologically benign, easy, affordable, and systematic approach to nanoparticle synthesis. Given the vast range of uses for organic nanoparticles, as in environmental and medicinal domains, the utilization of green approaches is pivotal in the synthesis of NPs. The goal of sustainable synthesis is to reduce the utilization of toxic substances, for manufacturing nanoparticles. The basics of green chemistry are discussed here, as well as an overview of environmental-friendly synthesis of organic nanomaterials and their uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, C. D., & Daniels, E. S. (2003). Emulsion polymerisation and latex applications (Vol. 14). iSmithers Rapra Publishing.

    Google Scholar 

  • Barbinta-Patrascu, M. E., Badea, N., Ungureanu, C., Constantin, M., Pirvu, C., & Rau, I. (2016). Silver-based biohybrids “green” synthesized from Chelidonium majus L. Optical Materials, 56, 94–99.

    Article  CAS  Google Scholar 

  • Bello, S. A., Agunsoye, J. O., & Hassan, S. B. (2015). Synthesis of coconut shell nanoparticles via a top down approach: Assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Materials Letters, 159, 514–519.

    Article  CAS  Google Scholar 

  • Bengoechea, C., Cordobés Carmona, F., Puppo, M.C. & Guerrero, A. (2007). Viscoelasticidad lineal y tamaños de gota de emulsiones o/w estabilizadas por proteínas vegetales.

    Google Scholar 

  • Bhardwaj, A. K., & Naraian, R. (2021). Cyanobacteria as biochemical energy source for the synthesis of inorganic nanoparticles, mechanism and potential applications: A review. 3 Biotech, 11(10), 445.

    Article  Google Scholar 

  • Bhardwaj, A. K., Kumar, V., Pandey, V., Naraian, R., & Gopal, R. (2019). Bacterial killing efficacy of synthesized rod shaped cuprous oxide nanoparticles using laser ablation technique. SN Applied Sciences, 1, 1–8.

    Article  CAS  Google Scholar 

  • Bhardwaj, K., Sharma, A., Tejwan, N., Bhardwaj, S., Bhardwaj, P., Nepovimova, E., Shami, A., Kalia, A., Kumar, A., Abd-Elsalam, K. A., & Kuča, K. (2020). Pleurotus macrofungi-assisted nanoparticle synthesis and its potential applications: A review. Journal of Fungi, 6(4), 351.

    Article  CAS  Google Scholar 

  • Blanco, E., Kessinger, C. W., Sumer, B. D., & Gao, J. (2009). Multifunctional micellar nanomedicine for cancer therapy. Experimental Biology and Medicine, 234(2), 123–131.

    Article  CAS  Google Scholar 

  • Bonatto, C. C., & Silva, L. P. (2014). Higher temperatures speed up the growth and control the size and optoelectrical properties of silver nanoparticles greenly synthesized by cashew nutshells. Industrial Crops and Products, 58, 46–54.

    Article  CAS  Google Scholar 

  • Bouchemal, K. S. E. H. I. N., Briançon, S., Perrier, E., Fessi, H., Bonnet, I., & Zydowicz, N. (2004). Synthesis and characterization of polyurethane and poly (ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. International Journal of Pharmaceutics, 269(1), 89–100.

    Article  CAS  Google Scholar 

  • Camelo, S., Lajavardi, L., Bochot, A., Goldenberg, B., Naud, M. C., Brunel, N., Lescure, B., Klein, C., Fattal, E., Behar-Cohen, F., & de Kozak, Y. (2009). Protective effect of Intravitreal injection of vasoactive intestinal peptide–loaded liposomes on experimental autoimmune Uveoretinitis. Journal of Ocular Pharmacology and Therapeutics, 25(1), 9–22.

    Article  CAS  Google Scholar 

  • Canalle, L. A., Löwik, D. W., & van Hest, J. C. (2010). Polypeptide–polymer bioconjugates. Chemical Society Reviews, 39(1), 329–353.

    Article  CAS  Google Scholar 

  • Chen, Z., Wang, C., Chen, J., & Li, X. (2013). Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols. Journal of the American Chemical Society, 135(11), 4179–4182.

    Article  CAS  Google Scholar 

  • Cheng, Y., Ramos, D., Lee, P., Liang, D., Yu, X., & Kumbar, S. G. (2014). Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering. Journal of Biomedical Nanotechnology, 10(2), 287–298.

    Article  CAS  Google Scholar 

  • Cheng, H. B., Li, Y., Tang, B. Z., & Yoon, J. (2020). Assembly strategies of organic-based imaging agents for fluorescence and photoacoustic bioimaging applications. Chemical Society Reviews, 49(1), 21–31.

    Article  Google Scholar 

  • Cheviron, P., Gouanvé, F., & Espuche, E. (2014). Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydrate Polymers, 108, 291–298.

    Article  CAS  Google Scholar 

  • Christian, D. A., Cai, S., Bowen, D. M., Kim, Y., Pajerowski, J. D., & Discher, D. E. (2009). Polymersome carriers: from self-assembly to siRNA and protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 71(3), 463–474.

    Article  CAS  Google Scholar 

  • Chronopoulou, L., Fratoddi, I., Palocci, C., Venditti, I., & Russo, M. V. (2009). Osmosis based method drives the self-assembly of polymeric chains into micro-and nanostructures. Langmuir, 25(19), 11940–11946.

    Article  CAS  Google Scholar 

  • Cuomo, F., Lopez, F., Miguel, M. G., & Lindman, B. (2010). Vesicle-templated layer-by-layer assembly for the production of nanocapsules. Langmuir, 26(13), 10555–10560.

    Article  CAS  Google Scholar 

  • Dalpiaz, A., Vighi, E., Pavan, B., & Leo, E. (2009). Fabrication via a nonaqueous nanoprecipitation method, characterization and in vitro biological behavior of N6-cyclopentyladenosine-loaded nanoparticles. Journal of Pharmaceutical Sciences, 98(11), 4272–4284.

    Article  CAS  Google Scholar 

  • Deepak, V., Kalishwaralal, K., & Gurunathan, S. (2009). Purification, immobilization, and characterization of nattokinase on PHB nanoparticles. Bioresource Technology, 100(24), 6644–6646.

    Article  CAS  Google Scholar 

  • del Carpio-Perochena, A., Bramante, C. M., Duarte, M. A. H., de Moura, M. R., Aouada, F. A., & Kishen, A. (2015). Chelating and antibacterial properties of chitosan nanoparticles on dentin. Restorative Dentistry & Endodontics, 40(3), 195–201.

    Article  Google Scholar 

  • Ding, F., Shi, X., Jiang, Z., Liu, L., Cai, J., Li, Z., Chen, S., & Du, Y. (2013). Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. Journal of Materials Chemistry B, 1(12), 1729–1737.

    Article  CAS  Google Scholar 

  • El-Aasser, M. S., Lack, C. D., Vanderhoff, J. W., & Fowkes, F. M. (1988). The miniemulsification process—different form of spontaneous emulsification. Colloids and Surfaces, 29(1), 103–118.

    Article  CAS  Google Scholar 

  • Elzatahry, A. A., & Eldin, M. M. (2008). Preparation and characterization of metronidazole-loaded chitosan nanoparticles for drug delivery application. Polymers for Advanced Technologies, 19(12), 1787–1791.

    Google Scholar 

  • Fei, J., Zhao, J., Du, C., Wang, A., Zhang, H., Dai, L., & Li, J. (2014). One-pot ultrafast self-assembly of autofluorescent polyphenol-based core@ shell nanostructures and their selective antibacterial applications. ACS Nano, 8(8), 8529–8536.

    Article  CAS  Google Scholar 

  • Gangula, A., Podila, R., Karanam, L., Janardhana, C., & Rao, A. M. (2011). Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir, 27(24), 15268–15274.

    Article  Google Scholar 

  • Grover, G. N., & Maynard, H. D. (2010). Protein–polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Current Opinion in Chemical Biology, 14(6), 818–827.

    Article  CAS  Google Scholar 

  • Haddon, R. C. (2002). Carbon nanotubes. Accounts of Chemical Research, 35(12), 997–997.

    Article  CAS  Google Scholar 

  • Hett, A. (2004). Nanotechnology: Small matter, many unknowns. Swiss Reinsurance Company.

    Google Scholar 

  • Hodge, P. (1993). Polymer science branches out. Nature, 362(6415), 18–19.

    Article  Google Scholar 

  • Hou, Y., Hu, J., Park, H., & Lee, M. (2012). Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications. Journal of Biomedical Materials Research Part A, 100(4), 939–947.

    Article  Google Scholar 

  • Huang, W., Taylor, S., Fu, K., Lin, Y., Zhang, D., Hanks, T. W., Rao, A. M., & Sun, Y. P. (2002). Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Letters, 2(4), 311–314.

    Article  CAS  Google Scholar 

  • Immordino, M. L., Dosio, F., & Cattel, L. (2006). Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine, 1(3), 297.

    CAS  Google Scholar 

  • Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638–2650.

    Article  CAS  Google Scholar 

  • Jacob, M. V., Rawat, R. S., Ouyang, B., Bazaka, K., Kumar, D. S., Taguchi, D., Iwamoto, M., Neupane, R., & Varghese, O. K. (2015). Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Letters, 15(9), 5702–5708.

    Article  CAS  Google Scholar 

  • **, Z., Sugiyama, Y., Zhang, C., Palui, G., **n, Y., Du, L., Wang, S., Dridi, N., & Mattoussi, H. (2020). Rapid photoligation of gold nanocolloids with lipoic acid-based ligands. Chemistry of Materials, 32(17), 7469–7483.

    Article  CAS  Google Scholar 

  • **g, X., Mi, H. Y., Peng, J., Peng, X. F., & Turng, L. S. (2015a). Electrospun aligned poly (propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydrate Polymers, 117, 941–949.

    Article  CAS  Google Scholar 

  • **g, X., Mi, H. Y., Wang, X. C., Peng, X. F., & Turng, L. S. (2015b). Shish-kebab-structured poly (ε-caprolactone) nanofibers hierarchically decorated with chitosan–poly (ε-caprolactone) copolymers for bone tissue engineering. ACS Applied Materials & Interfaces, 7(12), 6955–6965.

    Article  CAS  Google Scholar 

  • Kapur, A., Medina, S. H., Wang, W., Palui, G., Ji, X., Schneider, J. P., & Mattoussi, H. (2018). Enhanced uptake of luminescent quantum dots by live cells mediated by a membrane-active peptide. ACS Omega, 3(12), 17164–17172.

    Article  CAS  Google Scholar 

  • Kedar, U., Phutane, P., Shidhaye, S., & Kadam, V. (2010). Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine, 6(6), 714–729.

    Article  CAS  Google Scholar 

  • Khan, I., Khalid, S., & Khan, I. (2019). Nanoparticles: Properties, Application and Toxicities. Arabian Journal of Chemistry, 12, 908–993.

    Article  CAS  Google Scholar 

  • Kim, D., Kim, E., Lee, J., Hong, S., Sung, W., Lim, N., Park, C. G., & Kim, K. (2010). Direct synthesis of polymer nanocapsules: self-assembly of polymer hollow spheres through irreversible covalent bond formation. Journal of the American Chemical Society, 132(28), 9908–9919.

    Article  CAS  Google Scholar 

  • Kim, J. H., Yu, D., Eom, S. H., Kim, S. H., Oh, J., Jung, W. K., & Kim, Y. M. (2017). Synergistic antibacterial effects of chitosan-caffeic acid conjugate against antibiotic-resistant acne-related bacteria. Marine Drugs, 15(6), 167.

    Article  Google Scholar 

  • Kishen, A., Shi, Z., Shrestha, A., & Neoh, K. G. (2008). An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. Journal of Endodontics, 34(12), 1515–1520.

    Article  Google Scholar 

  • Klajnert, B., & Bryszewska, M. (2001). Dendrimers: properties and applications. Acta Biochimica Polonica, 48(1), 199–208.

    Article  CAS  Google Scholar 

  • Koshino, M., Tanaka, T., Solin, N., Suenaga, K., Isobe, H., & Nakamura, E. (2007). Imaging of single organic molecules in motion. Science, 316(5826), 853–853.

    Article  CAS  Google Scholar 

  • Kostag, M., Köhler, S., Liebert, T., & Heinze, T. (2010). Pure cellulose nanoparticles from trimethylsilyl cellulose. In Macromolecular symposia (Vol. 294, No. 2, pp. 96–106). WILEY-VCH Verlag.

    Google Scholar 

  • Langer, K., Anhorn, M. G., Steinhauser, I., Dreis, S., Celebi, D., Schrickel, N., Faust, S., & Vogel, V. (2008). Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. International Journal of Pharmaceutics, 347(1–2), 109–117.

    Article  CAS  Google Scholar 

  • Lee, J., Cho, E. C., & Cho, K. (2004). Incorporation and release behavior of hydrophobic drug in functionalized poly (D, L-lactide)-block–poly (ethylene oxide) micelles. Journal of Controlled Release, 94(2–3), 323–335.

    Article  CAS  Google Scholar 

  • Legrand, P., Lesieur, S., Bochot, A., Gref, R., Raatjes, W., Barratt, G., & Vauthier, C. (2007). Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. International Journal of Pharmaceutics, 344(1–2), 33–43.

    Article  CAS  Google Scholar 

  • Liu, J., Qiu, Z., Wang, S., Zhou, L., & Zhang, S. (2010). A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomedical Materials, 5(6), 065002.

    Article  Google Scholar 

  • Liu, C., Wan, T., Wang, H., Zhang, S., **, Y., & Cheng, Y. (2019). A boronic acid–rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Science Advances, 5(6), eaaw8922.

    Article  CAS  Google Scholar 

  • Lizarraga, M. S., Pan, L. G., Añon, M. C., & Santiago, L. G. (2008). Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions—I. Whey protein concentrate. Food Hydrocolloids, 22(5), 868–878.

    Article  CAS  Google Scholar 

  • Loh, J. W., Yeoh, G., Saunders, M., & Lim, L. Y. (2010). Uptake and cytotoxicity of chitosan nanoparticles in human liver cells. Toxicology and Applied Pharmacology, 249(2), 148–157.

    Article  CAS  Google Scholar 

  • Meziani, M. J., Pathak, P., Wang, W., Desai, T., Patil, A., & Sun, Y. P. (2005). Polymeric nanofibers from rapid expansion of supercritical solution. Industrial & Engineering Chemistry Research, 44(13), 4594–4598.

    Article  CAS  Google Scholar 

  • Michael, A., Singh, A., Roy, A., & Islam, M. R. (2022a). Fungal- and algal-derived synthesis of various nanoparticles and their applications. Hindawi Bioinorganic Chemistry and Applications, 2022, Article ID 3142674, 14.

    Google Scholar 

  • Michael, A., Singh, A., Roy, A., & Islam, M. R. (2022b). Fungal-and algal-derived synthesis of various nanoparticles and their applications. Bioinorganic Chemistry and Applications, 2022, 2022.

    Article  Google Scholar 

  • Miclea, R. D., Varma, P. R., Peng, A., & Balu-Iyer, S. V. (2007). Development and characterization of lipidic cochleate containing recombinant factor VIII. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768(11), 2890–2898.

    Article  CAS  Google Scholar 

  • Moraes, C. M., de Matos, A. P., Grillo, R., de Melo, N. F., de Paula, E., Dias Filho, N. L., Rosa, A. H., & Fraceto, L. F. (2011). Screening of formulation variables for the preparation of poly (epsilon-caprolactone) nanocapsules containing the local anesthetic benzocaine. Journal of Nanoscience and Nanotechnology, 11(3), 2450–2457.

    Article  CAS  Google Scholar 

  • Moribe, K., Maruyama, S., Inoue, Y., Suzuki, T., Fukami, T., Tomono, K., Higashi, K., Tozuka, Y., & Yamamoto, K. (2010). Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs. International Journal of Pharmaceutics, 387(1–2), 236–243.

    Article  CAS  Google Scholar 

  • Mozafari, M. R., Flanagan, J., Matia-Merino, L., Awati, A., Omri, A., Suntres, Z. E., & Singh, H. (2006). Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86(13), 2038–2045.

    Article  CAS  Google Scholar 

  • Muramatsu, H., Kim, Y. A., Yang, K. S., Cruz-Silva, R., Toda, I., Yamada, T., Terrones, M., Endo, M., Hayashi, T., & Saitoh, H. (2014). Rice husk-derived graphene with nano-sized domains and clean edges. Small, 10(14), 2766–2770.

    Article  CAS  Google Scholar 

  • Oliveira, J. M., Salgado, A. J., Sousa, N., Mano, J. F., & Reis, R. L. (2010). Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—A review. Progress in Polymer Science, 35(9), 1163–1194.

    Article  CAS  Google Scholar 

  • Palui, G., Aldeek, F., Wang, W., & Mattoussi, H. (2015). Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chemical Society Reviews, 44(1), 193–227.

    Article  CAS  Google Scholar 

  • Patel, G. B., Agnew, B. J., Deschatelets, L., Fleming, L. P., & Sprott, G. D. (2000). In vitro assessment of archaeosome stability for develo** oral delivery systems. International Journal of Pharmaceutics, 194(1), 39–49.

    Article  CAS  Google Scholar 

  • Paulkumar, K., Gnanajobitha, G., Vanaja, M., Pavunraj, M., & Annadurai, G. (2017). Green synthesis of silver nanoparticle and silver based chitosan bionanocomposite using stem extract of Saccharum officinarum and assessment of its antibacterial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(3), 035019.

    Google Scholar 

  • Prato, M., Kostarelos, K., & Bianco, A. (2008). Functionalized carbon nanotubes in drug design and discovery. Accounts of Chemical Research, 41(1), 60–68.

    Article  CAS  Google Scholar 

  • Purkait, T., Singh, G., Singh, M., Kumar, D., & Dey, R. S. (2017). Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Scientific Reports, 7(1), 15239.

    Article  Google Scholar 

  • Qin, Y., Lu, X., Sun, N., & Rogers, R. D. (2010). Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chemistry, 12(6), 968–971.

    Article  CAS  Google Scholar 

  • Qu, Y., Ju, Y., Cortez-Jugo, C., Lin, Z., Li, S., Zhou, J., Ma, Y., Glab, A., Kent, S. J., Cavalieri, F., & Caruso, F. (2020). Template-mediated assembly of DNA into microcapsules for immunological modulation. Small, 16(37), 2002750.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Islam, M. S., Sharmin, N., Chowdhury, J. A., & Jalil, R. U. (2010). Preparation and evaluation of cellulose acetate phthalate and ethyl cellulose based microcapsules of diclofenac sodium using emulsification and solvent-evaporation method. Dhaka University Journal of Pharmaceutical Sciences, 9(1), 39–46.

    Article  Google Scholar 

  • Reis, C. P., Neufeld, R. J., Ribeiro, A. J., & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2(1), 8–21.

    Article  CAS  Google Scholar 

  • Rolland, J. P., Maynor, B. W., Euliss, L. E., Exner, A. E., Denison, G. M., & DeSimone, J. M. (2005). Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. Journal of the American Chemical Society, 127(28), 10096–10100.

    Article  CAS  Google Scholar 

  • Romero, G., Estrela-Lopis, I., Zhou, J., Rojas, E., Franco, A., Espinel, C. S., Fernández, A. G., Gao, C., Donath, E., & Moya, S. E. (2010). Surface engineered poly (lactide-co-glycolide) nanoparticles for intracellular delivery: Uptake and cytotoxicity—A confocal raman microscopic study. Biomacromolecules, 11(11), 2993–2999.

    Article  CAS  Google Scholar 

  • Schubert, S., Delaney, J. T., Jr., & Schubert, U. S. (2011). Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly (lactic acid). Soft Matter, 7(5), 1581–1588.

    Article  CAS  Google Scholar 

  • Shankar, S. S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., & Sastry, M. (2004). Biological synthesis of triangular gold nanoprisms. Nature Materials, 3(7), 482–488.

    Article  CAS  Google Scholar 

  • Sigfridsson, K., Björkman, J. A., Skantze, P., & Zachrisson, H. (2011). Usefulness of a nanoparticle formulation to investigate some hemodynamic parameters of a poorly soluble compound. Journal of Pharmaceutical Sciences, 100(6), 2194–2202.

    Article  CAS  Google Scholar 

  • Singh, P., Bahadur, J., & Pal, K. (2017). One-step one chemical synthesis process of graphene from rice husk for energy storage applications. Graphene, 6(3), 61–71.

    Article  CAS  Google Scholar 

  • Singh, M. P., Bhardwaj, A. K., Bharati, K., Singh, R. P., Chaurasia, S. K., Kumar, S., Singh, R. P., Shukla, A., Naraian, R., & Vikram, K. (2021). Biogenic and non-biogenic waste utilization in the synthesis of 2D materials (graphene, h-BN, g-C2N) and their applications. Frontiers in Nanotechnology, 3, 685427.

    Article  Google Scholar 

  • Smitha, S. L., Philip, D., & Gopchandran, K. G. (2009). Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica acta Part A: Molecular and biomolecular spectroscopy, 74(3), 735–739.

    Article  CAS  Google Scholar 

  • Sole, I., Maestro, A., González, C., Solans, C., & Gutiérrez, J. M. (2006). Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir, 22(20), 8326–8332.

    Article  CAS  Google Scholar 

  • Sun, Y. P., Rolling, H. W., Bandara, J., Meziani, J. M., & Bunker, C. E. (2002). Preparation and processing of nanoscale materials by supercritical fluid technology. In Supercritical fluid technology in materials science and engineering: Synthesis, properties, and applications (pp. 491–576). Marcel Dekker.

    Chapter  Google Scholar 

  • Tasis, D., Tagmatarchis, N., Bianco, A., & Prato, M. (2006). Chemistry of carbon nanotubes. Chemical Reviews, 106, 1105–1136.

    Article  CAS  Google Scholar 

  • Van Bruggen, C., Hexum, J. K., Tan, Z., Dalal, R. J., & Reineke, T. M. (2019). Nonviral gene delivery with cationic glycopolymers. Accounts of Chemical Research, 52(5), 1347–1358.

    Article  Google Scholar 

  • Velmurugan, P., Sivakumar, S., Young-Chae, S., Seong-Ho, J., Pyoung-In, Y., Jeong-Min, S., & Sung-Chul, H. (2015). Synthesis and characterization comparison of peanut shell extract silver nanoparticles with commercial silver nanoparticles and their antifungal activity. Journal of Industrial and Engineering Chemistry, 31, 51–54.

    Article  CAS  Google Scholar 

  • Vemavarapu, C., Mollan, M. J., Lodaya, M., & Needham, T. E. (2005). Design and process aspects of laboratory scale SCF particle formation systems. International Journal of Pharmaceutics, 292(1–2), 1–16.

    Article  CAS  Google Scholar 

  • Wang, Y., He, X., Wang, K., Zhang, X., & Tan, W. (2009). Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids and Surfaces B: Biointerfaces, 73(1), 75–79.

    Article  CAS  Google Scholar 

  • Wang, M., Cai, X., Yang, J., Wang, C., Tong, L., **ao, J., & Li, L. (2018). A targeted and pH-responsive bortezomib nanomedicine in the treatment of metastatic bone tumors. ACS Applied Materials & Interfaces, 10(48), 41003–41011.

    Article  CAS  Google Scholar 

  • Weber, C., Coester, C., Kreuter, J., & Langer, K. (2000). Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics, 194(1), 91–102.

    Article  CAS  Google Scholar 

  • Were, L. M., Bruce, B. D., Davidson, P. M., & Weiss, J. (2003). Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. Journal of Agricultural and Food Chemistry, 51(27), 8073–8079.

    Article  CAS  Google Scholar 

  • Wu, G., Barth, R. F., Yang, W., Chatterjee, M., Tjarks, W., Ciesielski, M. J., & Fenstermaker, R. A. (2004). Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjugate Chemistry, 15(1), 185–194.

    Article  CAS  Google Scholar 

  • **ang, S., Yang, P., Guo, H., Zhang, S., Zhang, X., Zhu, F., & Li, Y. (2017). Green tea makes polyphenol nanoparticles with radical-scavenging activities. Macromolecular Rapid Communications, 38(23), 1700446.

    Article  Google Scholar 

  • Yallapu, M. M., Gupta, B. K., Jaggi, M., & Chauhan, S. C. (2010). Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of Colloid and Interface Science, 351(1), 19–29.

    Article  CAS  Google Scholar 

  • Zhang, Y., Fang, F., Li, L., & Zhang, J. (2020). Self-assembled organic nanomaterials for drug delivery, bioimaging, and cancer therapy. ACS Biomaterials Science & Engineering, 6(9), 4816–4833.

    Article  CAS  Google Scholar 

  • Zhao, D., Zhao, X., Zu, Y., Li, J., Zhang, Y., Jiang, R., & Zhang, Z. (2010). Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. International Journal of Nanomedicine, 5, 669–677.

    CAS  Google Scholar 

  • Zhou, N., Huo, F., Yue, Y., & Yin, C. (2020). Specific fluorescent probe based on “protect–deprotect” to visualize the norepinephrine signaling pathway and drug intervention tracers. Journal of the American Chemical Society, 142(41), 17751–17755.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Kumar, A., Singh, R., Saxena, R., Bharti, D. (2024). Green Synthesis of Organic Nanomaterials and Their Applications. In: Bhardwaj, A.K., Srivastav, A.L., Rai, S. (eds) Biogenic Wastes-Enabled Nanomaterial Synthesis. Springer, Cham. https://doi.org/10.1007/978-3-031-59083-2_7

Download citation

Publish with us

Policies and ethics

Navigation