Arsenic Induced Toxicity and Regulation Through Metabolomic, Hormonal and Signaling Hubs in Plants

  • Chapter
  • First Online:
Metals and Metalloids in Plant Signaling

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 31 Accesses

Abstract

Arsenic (As) contamination of soil is an alarming problem and, flora and fauna are greatly affected with reduced growth and development. The two forms of inorganic As (iAs), arsenate [As(V)] and arsenite [As(III)], are easily taken up by plant roots through various transporters and are toxic to plants and therefore disrupt major plant metabolic activities. Arsenate mimics phosphate: thus, it can affect cellular signaling by affecting phosphorylation, reduce ATP generation and impact glycolysis and DNA-RNA metabolism. Arsenite is thiol reactive and can form bond with up to three sulfhydryl groups and adversely affect the enzymes containing two or more cysteine residues in close vicinity and dithiol co-factors. Arsenite can also bind to the poly-thiol compounds like phytochelatins, cysteine-rich polymerization product of glutathione. The presence of As induces the production of reactive oxygen species (ROS) and also impacts carbon, amino acid, nitrogen and sulfur metabolisms and source-sink relationships. The defense mechanism of plants counteracts the As stress through morphological and physiological adaptations, which are fine-tuned through a complex network of signaling and effector molecules. The important defense mechanisms include antioxidant enzymes and molecules, and thiol metabolism. The crucial signaling components comprise of nitric oxide (NO), salicylic acid (SA), abscisic acid (ABA), jasmonic acid (JA), microRNAs, mitogen-activated protein kinases (MAPKs), and transcription factors, which coordinate various metabolic processes to improve As stress tolerance of plants. This chapter discusses insights into mechanisms of As stress tolerance and the role of various metabolites and signaling factors in the regulation of As-induced stress events in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Google Scholar 

  • Agnihotri A, Seth CS (2016) Exogenously applied nitrate improves the photosynthetic performance and nitrogen metabolism in tomato (Solanum lycopersicum L. cv Pusa Rohini) under arsenic (V) toxicity. Physiol Mol Biol Plants 22:341–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alamri S, Siddiqui MH, Kushwaha BK, Singh VP, Ali HM (2021) Mitigation of arsenate toxicity by indole-3-acetic acid in brinjal roots: plausible association with endogenous hydrogen peroxide. J Hazard Mater 405:124336

    Article  CAS  PubMed  Google Scholar 

  • Aldridge DC, Galt S, Giles D, Turner WD (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C 1971:1623–1627

    Article  Google Scholar 

  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Azad N, Rezayian M, Hassanpour H, Niknam V, Ebrahimzadeh H (2021) Physiological mechanism of salicylic acid in Mentha pulegium L. under salinity and drought stress. Braz J Bot 44:359–369

    Article  Google Scholar 

  • Bassi D, Menossi M, Mattiello L (2018) Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci Rep 8:2327

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjorklund G, Oliinyk P, Lysiuk R, Rahman MS, Antonyak H, Lozynska I, Lenchyk L, Peana M (2020) Arsenic intoxication: general aspects and chelating agents. Arch Toxicol 94:1879–1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    Article  CAS  PubMed  Google Scholar 

  • Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    Article  PubMed  PubMed Central  Google Scholar 

  • Buscail P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opin Plant Biol 20:35–46

    Article  Google Scholar 

  • Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma LQ (2017) Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol 51:12131–12138

    Article  CAS  PubMed  Google Scholar 

  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Mohan TC (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrakar V, Keshavkant S (2019) Nitric oxide and dimethylthiourea up‐regulates pyrroline‐5‐carboxylate synthetase expression to improve arsenic tolerance in Glycine max L. Environ Prog Sustain Energy 38(2):402–409

    Google Scholar 

  • Chauhan R, Awasthi S, Indoliya Y, Chauhan AS, Mishra S, Agrawal L, Srivastava S, Dwivedi S, Singh PC, Mallick S, Chauhan PS, Pande V, Chakrabarty D, Tripathi RD (2020) Transcriptome and proteome analyses reveal selenium mediated amelioration of arsenic toxicity in rice (Oryza sativa L.). J Hazard Mater 390:122122

    Google Scholar 

  • Chen Y, Sun SK, Tang Z, Liu G, Moore KL, Maathuis FJ, Miller AJ, MacGrath SP, Zhao FJ (2017) The Nodulin 26-like intrinsic membrane protein OsNIP3; 2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68:3007–3016

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Ruan J, Chu P, Fu W, Liang Z, Li Y, Tong J, **ao L, Liu J, Li C, Huang S (2020a) AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynthesis in Arabidopsis seeds. Plant J 101:310–323

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020b) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62:25–54

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:1–13

    Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  PubMed  Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiol 54:904–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho DG, de Andrade HM, Marinato CS, Araujo SC, de Matos LP, da Silva VM, de Oliveira AJ (2020) Exogenous jasmonic acid enhances oxidative protection of Lemna valdiviana subjected to arsenic. Acta Physiol Plant 42:97

    Article  CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • de la Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y, Chakravarthy S, Martin GB, del Pozo O (2013) The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity. Plant Cell 25:2748–2764

    Article  PubMed  PubMed Central  Google Scholar 

  • Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant charactéristique de lèssence de jasmin. Helv Chim Acta 45:675–685

    Article  CAS  Google Scholar 

  • Ding Y, Ding L, **a Y, Wang F, Zhu C (2020) Emerging roles of microRNAs in plant heavy metal tolerance and homeostasis. J Agric Food Chem 68:1958–1965

    Article  CAS  PubMed  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defence system in rice. J Hazard Mater 298:241–251

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, den Broeck LV, Claeys H, Vlierberghe KV, Matsui M, Inze D (2015) The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiol 169:166–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi S, Mishra A, Tripathi P, Dave R, Kumar A, Srivastava S, Chakrabarty D, Trivedi PK, Adhikari B, Norton GJ, Nautiyal CS, Tripathi RD (2012) Arsenic affects essential and non-essential amino acids differentially in rice grains: inadequacy of amino acids in rice based diet. Environ Int 46:16–22

    Article  CAS  PubMed  Google Scholar 

  • Fang P, Wang Y, Wang M, Wang F, Chi C, Zhou Y, Zhou J, Shi K, **a X, Foyer CH, Yu J (2021) Crosstalk between brassinosteroid and redox signaling contributes to the activation of CBF expression during cold responses in tomato. Antioxidants (Basel) 10:509

    Article  CAS  PubMed  Google Scholar 

  • Farooq MA, Hong Z, Islam F, Noor Y, Hannan F, Zhang Y, Ayyaz A, Mwamba TM, Zhou W, Song W (2021) Comprehensive proteomic analysis of arsenic induced toxicity reveals the mechanism of multilevel coordination of efficient defense and energy metabolism in two Brassica napus cultivars. Ecotoxicol Environ Saf 208:111744

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166

    Article  PubMed  PubMed Central  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghuge SA, Nikalje GC, Kadam US, Suprasanna P, Hong JC (2023) Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. J Hazard Mater 450:131039. https://doi.org/10.1016/j.jhazmat.2023.131039

    Article  CAS  PubMed  Google Scholar 

  • Grun S, Lindermayr C, Sell S, Durner J (2016) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    Article  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Thokham SD, Kapoor R (2021) Arbuscular mycorrhiza improves photosynthesis and restores alteration in sugar metabolism in Triticum aestivum L. grown in arsenic contaminated soil. Front Plant Sci 12:640379

    Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2012) Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. Acta Physiol Plant 35:1201–1209

    Article  Google Scholar 

  • Hancock JT, Whiteman M (2016) Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Ann N Y Acad Sci 1365:5–14

    Article  CAS  PubMed  Google Scholar 

  • Hao GP, Zhang JH (2010) The role of nitric oxide as a bioactive signalling molecule in plants under abiotic stress. In: Hayat S, Mori M, Pitchel J, Ahmad A (eds) Nitric oxide in plan physiology. Wiley-VCH Verlag, Weinheim, pp 115–138

    Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    Google Scholar 

  • Hauser F, Li Z, Waadt R, Schroeder JI (2017) Snapshot: abscisic acid signaling. Cell 171:1708–1708.e0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34:740–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellou J, Ross NW, Moon TW (2012) Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environ Sci Pollut Res 19:2007–2023

    Article  CAS  Google Scholar 

  • Hong CP, Wang MC, Yang CY (2020) NADPH oxidase RbohD and ethylene signaling are involved in modulating seedling growth and survival under submergence stress. Plants (Basel) 9:471

    CAS  PubMed  Google Scholar 

  • Hošek P, Hoyerová K, Kiran NS, Dobrev PI, Zahajská L, Filepová R, Motyka V, Müller K, Kamínek M (2020) Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol 225:2423–2438

    Article  PubMed  Google Scholar 

  • Hu J, Yang H, Mu J, Lu T, Peng J, Deng X, Kong Z, Bao S, Cao X, Zuo J (2017) Nitric oxide regulates protein methylation during stress responses in plants. Mol Cell 67:702–710

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Deng F, Chen G, Chen X, Gao W, Long L, **a J, Chen ZH (2020) Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Front Plan Sci 11:909

    Article  Google Scholar 

  • Huang TL, Nguyen QTT, Fu SF, Lin CY, Chen YC, Huang HJ (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Feng C-Z, Ye Q, Wu W-H, Chen Y-F (2016) Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genet 12:e1005833

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang H, Ryu H, Cho H (2021) Brassinosteroid signaling pathways interplaying with diverse signaling cues for crop enhancement. Agronomy 11:556

    Article  CAS  Google Scholar 

  • Iglesias MJ, Terrile MC, Bartoli CG, D’Ippolito S, Casalongue CA (2010) Auxin signalling participates in the adaptive responses against oxidative stress and salinity by interacting with redox metabolism in Arabidopsis. Plant Mol Biol 74:215–222

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 8:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotoxicol Environ Saf 114:126–133

    Article  CAS  PubMed  Google Scholar 

  • Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:1–21

    Article  Google Scholar 

  • Jamla M, Khare T, Joshi S, Patil S, Penna S, Kumar V (2021) Omics approaches for understanding heavy metal responses and tolerance in plants. Curr Plant Biol 27:100213. https://doi.org/10.1016/j.cpb.2021.100213

    Article  CAS  Google Scholar 

  • Jankovic MM (2020) Arsenic contamination status in North America. In: Srivastava S (ed) Arsenic in drinking water and food. Springer, Singapore, pp 41–69

    Chapter  Google Scholar 

  • Jiao Y, Sun L, Song Y, Wang L, Liu L, Zhang L, Liu B, Li N, Miao C, Hao F (2013) AtrbohD and AtrbohF positively regulates primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. J Exp Bot 64:4183–4192

    Article  CAS  PubMed  Google Scholar 

  • Jobe TO, Yu Q, Hauser F, **e Q, Meng Y, Maassen T, Kopriva S, Schroeder JI (2021) The SLIM1 transcription factor is required for arsenic resistance in Arabidopsis thaliana. FEBS Lett. https://doi.org/10.1002/1873-3468.14096

    Article  PubMed  PubMed Central  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurado S, Abraham Z, Manzano C, Lopez-Torrejon G, Pacios LF, de Pozo JC (2010) The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. Plant Cell 22:3891–3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia E, Lee Y (2015) Abscisic acid transporters cooperate to control seed germination. Nat Commun 6:8113

    Article  PubMed  Google Scholar 

  • Kanwar MK, Poonam, Bhardwaj R (2015) Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicol Environ Saf 115:119–125

    Google Scholar 

  • Kanwar MK, Bajguz A, Zhou J, Bhardwaj R (2017) Analysis of brassinosteroids in plants. J Plant Growth Regul 36:1002–1030

    Article  CAS  Google Scholar 

  • Karle SB, Guru A, Dwivedi P, Kumar K (2021) Insights into the role of gasotransmitters mediating salt stress responses in plants. J Plant Growth Regul 1–17

    Google Scholar 

  • Kaur P, Handa N, Verma V, Bakshi P, Kalia R, Sareen S, Nagpal A, Vig A, Mir BA, Bhardwaj R (2019) Cross talk among reactive oxygen, nitrogen and sulfur during abiotic stress in plants. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley, Hoboken, NJ, pp 857–871

    Chapter  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P (2020) Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater 399:123020

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Schellingen K, Vangronsveld J, Cuypers A (2016) Ethylene and metal stress: small molecules, big molecules. Front Plant Sci 7:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroids signal transduction from receptor kinase to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  CAS  PubMed  Google Scholar 

  • Kolbert Z, Barroso JB, Brouquisse R, Corpas FJ, Gupta KJ, Lindermayr C, Laoke GJ, Palma JM, Petrivalsky M, Wendehenne D, Hancock JT (2019) A forty year journey: the generation and roles of NO in plants. Nitric Oxide 93:53–70

    Article  CAS  PubMed  Google Scholar 

  • Koźmińska A, Wiszniewska A, Hanus-Fajerska E, Muszyńska E (2018) Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnol Rep 12:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant Cell Environ 36:1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Kumar D (2014) Salicylic acid signalling in disease resistance. Plant Sci 228:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Klessig DF (2000) Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact 13:347–351

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Sinha AK (2013) Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice 6:1–5

    Article  Google Scholar 

  • Kumar K, Raina SK, Sultan SM (2020) Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. J Plant Biochem Biotechnol 29:700–714

    Google Scholar 

  • Kumar K, Wankhede DP, Sinha AK (2013) Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants. Front Biol 8:109–118

    Article  CAS  Google Scholar 

  • Kumar K, Gupta D, Mosa KA, Ramamoorthy K, Sharma P (2019) Arsenic transport, metabolism and possible mitigation strategies in plants. In: Srivastava S, Srivastava AK, Suprasanna P (eds) Plant metal interactions. Springer, pp 141–168

    Google Scholar 

  • Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S (2018) Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere 211:397–406

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Shull TE, Smalle JA (2019) Antagonistic activity of auxin and cytokinin in shoot and root organs. Plant Direct 3:e00121

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafuente A, Pajuelo E, Caviedes MA, Rodriguez-Llorente ID (2010) Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. J Plant Physiol 167:286–291

    Article  CAS  PubMed  Google Scholar 

  • Leila F, Asghar GA, Ayoub M, Amir R (2020) The effect of salicylic acid on some morphological characteristics, photosynthetic pigments and antioxidant system activity of basil (Ocimum basilicum L.) under arsenic toxicity. Environ Stress Crop Sci 13:297–312

    Google Scholar 

  • Leterrier M, Airaki M, Palma JM, Chaki M, Barroso JB, Corpas FJ (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut 166:136–143

    Article  CAS  PubMed  Google Scholar 

  • Leymarie J, Vitkauskaite G, Hoang HH, Gendreau E, Chazoule V, Meimoun P, Corbineau F, El-Maarouf-Bouteau H, Bailly C (2012) Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Plant Cell Physiol 53:96–106

    Google Scholar 

  • Li WX, Chen TB, Huang ZC, Lei M, Liao XY (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809

    Article  CAS  PubMed  Google Scholar 

  • Li X, Sun D, Feng H, Chen J, Chen Y, Li H, Cao Y, Ma LQ (2020) Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2. J Hazard Mater 399:122895

    Google Scholar 

  • Lumba S, Tsuchiya Y, Delmas F, Hezky J, Provart NJ, Lu QS, McCourt P, Gazzarini S (2012) The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene-regulated gene expression in Arabidopsis. BMS Biol 10:8

    CAS  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Manuka R, Saddhe AA, Kumar K (2018) Expression of OsWNK9 in Arabidopsis conferred tolerance to salt and drought stress. Plant Sci 270:58–71

    Article  CAS  PubMed  Google Scholar 

  • Manuka R, Saddhe AA, Srivastava AK, Kumar K, Suprasanna P (2021) Overexpression of rice OsWNK9 promotes arsenite tolerance in transgenic Arabidopsis plants. J Biotechnol 332:114–125

    Article  CAS  PubMed  Google Scholar 

  • Marumo S, Hattori H, Nanoyama Y, Munakata K (1968) The presence of novel plant growth regulators in leaves of Distylium racemosum Sieb et Zucc. Agric Biol Chem 32:528–529

    CAS  Google Scholar 

  • Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M (2019) Intra and extracellular journey of the phytohormone salicylic acid. Front Plant Sci 10:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Lauriere C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72:436–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medunic G, Fiket Z, Ivanic M (2020) Arsenic contamination status in Europe, Australia, and other parts of the world. In: Srivastava S (ed) Arsenic in drinking water and food. Springer, Singapore, pp 183–233

    Chapter  Google Scholar 

  • Mishra S, Upadhyay S, Shukla RK (2017) The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants. Front Physiol 7:691

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed HI, Latif HH, Hanafy RS (2016) Influence of nitric oxide application on some biochemical aspects, endogenous hormones, minerals and phenolic compounds of Vicia faba plant grown under arsenic stress. Gesunde Pflanz 68:99–107

    Article  CAS  Google Scholar 

  • Mohan TC, Castrillo G, Navarro C, Zarco-Fernandez S, Ramireddy E, Mateo C, Zanerreno AM, Paz-Ares J, Munoz R, Garcia-Mina JM, Hernandez LE, Schmulling T, Leyva A (2016) Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol 171:1418–1426

    PubMed  PubMed Central  Google Scholar 

  • Morales M, Munne-Bosch S (2019) Malondialdehyde: facts and artifacts. Plant Physiol 180:1246–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Rahman MM, Siddiqui MN, Fujita M, Tran LSP (2020) Salicylic acid antagonizes selenium phytotoxicity in rice: selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. J Hazard Mater 394:122572

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Rahman MM, Nguyen KH, Li W, Watanabe Y, Tran CD, Zhang M, Itouga M, Fujita M, Tran LSP (2021) Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. J Hazard Mater 415:125589

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SR, Niknejad Y, Fallah H, Tari DB (2020) Methyl jasmonate alleviates arsenic toxicity in rice. Plant Cell Rep 39:1041–1060

    Article  CAS  PubMed  Google Scholar 

  • Naeem M, Sadiq Y, Jahan A, Nabi A, Aftab T, Khan MMA (2020) Salicylic acid restrains arsenic induced oxidative burst in two varieties of Artemisia annua L. by modulating antioxidant defence system and artemisinin production. Ecotoxicol Environ Saf 202:110851

    Google Scholar 

  • Nagai K, Mori Y, Ishikawa S, Furuta T, Gamuyao R, Niimi Y, Hobo T, Fukuda M, Kojima M, Takebayashi Y, Fukushima A, Himuro Y, Kobayashi M, Ackley W, Hisano H, Sato K, Yoshida A, Wu J, Sakakibara H, Sato Y, Tsuji H, Akagi T, Ashikari M (2020) Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 584:109–114

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhami A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvez S, Abbas G, Shahid M, Amjad M, Hussain M, Asad SA, Imran M, Naeem MA (2020) Effect of salinity on physiological, biochemical and photostabilizing attributes of two genotypes of quinoa (Chenopodium quinoa Willd.) exposed to arsenic stress. Ecotoxicol Environ Saf 187:1–11

    Article  Google Scholar 

  • Pathare V, Srivastava S, Suprasanna P (2013) Evaluation of effects of arsenic on carbon, nitrogen and sulfur metabolism in two contrasting varieties of Brassica juncea. Acta Physiol Plant 35:3377–3389

    Article  CAS  Google Scholar 

  • Pfaff AR, Beltz J, King E, Ercal N (2019) Medicinal thiols: current status and new perspectives. Mini Rev Med Chem 20:513–529

    Article  Google Scholar 

  • Pi J, Horiguchi S, Sun Y, Nikaido M, Shimojo N, Hayashi T, Yamauchi H, Itoh K, Yamamoto M, Sun G, Waalkes MP (2003) A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits. Free Radic Biol Med 35:102–113

    Article  CAS  PubMed  Google Scholar 

  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581:209–220

    Article  PubMed  Google Scholar 

  • Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M, Sinha AK (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Turner IM, Melander WR (1989) Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 86:2214–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rin K, Kawaguchi K, Yamanaka K, Tezuka M, Oku N, Okada S (1995) DNA-strand breaks induced by dimethylarsinic acid, a metabolite of inorganic arsenics, are strongly enhanced by superoxide anion radicals. Biol Pharm Bull 18:45–48

    Google Scholar 

  • Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7:264–276

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K (2019) Jasmonic acid signalling pathway in plants. Int J Mol Sci 20:2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2001) Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 151:7–33

    Article  CAS  PubMed  Google Scholar 

  • Saddhe AA, Malvankar MR, Karle SB, Kumar K (2019) Reactive nitrogen species: paradigms of cellular signaling and regulation of salt stress in plants. Environ Exp Bot 161:86–97

    Article  CAS  Google Scholar 

  • Saini S, Kaur N, Pati PK (2021) Phytohormones: key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicol Environ Saf 223:112578. https://doi.org/10.1016/j.ecoenv.2021.112578

    Article  CAS  PubMed  Google Scholar 

  • Shahid MA, Balal RM, Khan N, Zotarellia L, Liua GD, Ali Sarkhosha A, Fernández-Zapatad JC, Nicoláse JJM, Garcia-Sanchez F (2019) Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicol Environ Saf 180:588–599

    Article  CAS  PubMed  Google Scholar 

  • Shakespear S, Sivaji M, Vinay K, Pillai A, Wani SH, Penna S, Yasin JK (2024) Navigating through harsh conditions: coordinated networks of plant adaptation to abiotic stress. J Plant Growth Regul. https://doi.org/10.1007/s00344-023-11224-4

  • Shan X, Yan J, **e D (2012) Comparison of phytohormones signalling mechanisms. Curr Opin Plant Biol 15:84–91

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Sidhu G, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M (2020) The role of salicylic acid in plants exposed to heavy metals. Molecules 25:540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Li XF, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113:7769–7792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi JH, Yang ZB (2011) Is ABP1 an auxin receptor yet? Mol Plant 4:635–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Srivastava S, Suprasanna P (2017) Genomics of metal stress-mediated signalling and plant adaptive responses in reference to phytohormones. Curr Genom 18:512–522

    Article  CAS  Google Scholar 

  • Shukla A, Awasthi S, Chauhan R, Srivastava S (2020) The status of arsenic contamination in India. In: Srivastava S (ed) Arsenic in drinking water and food. Springer, Singapore, pp 1–12

    Google Scholar 

  • Siddiqui MH, Alamri S, Khan MN, Corpas FJ, Al-Amri AA, Alsubaie QD, Ali HM, Kalaji HM, Ahmad P (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater 398:1–16

    Article  Google Scholar 

  • Šimášková M, O’Brien JA, Khan M, Van Noorden G, Ötvös K, Vieten A, De Clercq I, Van Haperen JMA, Cuesta C, Hoyerová K, Vanneste S, Marhavý P, Wabnik K, Van Breusegem F, Nowack M, Murphy A, Friml J, Weijers D, Beeckman T, Benková E (2015) Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat Commun 6:8717

    Article  PubMed  Google Scholar 

  • Singh VK, Upadhyay RS (2014) Effects of arsenic on reactive oxygen species and antioxidant defense system in tomato plants. Toxicol Environ Chem 96:1374–1383

    Article  CAS  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front Plant Sci 6:340

    Google Scholar 

  • Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D (2017) Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep 7:3592

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh N, Gaddam SR, Singh D, Trivedi PK (2021) Regulation of arsenic stress response by ethylene biosynthesis and signaling in Arabidopsis thaliana. Environ Exp Bot 185:104408

    Article  CAS  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Sci USA 111:15699–15704

    Google Scholar 

  • Song L, Huang SSC, Wise A, Castanon R, Nery JR, Chen H, et al (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354:1550. https://doi.org/10.1126/science.aag1550

  • Souri Z, Karimi N, Ahmad P (2021) The effect of NADPH oxidase inhibitor diphenyleneiodonium (DPI) and glutathione (GSH) on Isatis cappadocica, under arsenic (As) toxicity. Int J Phytoremediation 21:1–13

    Google Scholar 

  • Srivastava S (2020) Arsenic in drinking water and food. Springer, Singapore

    Book  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Suprasanna P, D’Souza SF (2011) Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248:805–815

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64:303–315

    Article  CAS  PubMed  Google Scholar 

  • Steenackers W, Klíma P, Quareshy M, Cesarino I, Kumpf RP, Corneillie S, Araújo P, Viaene T, Goeminne G, Nowack MK, Ljung K, Friml J, Blakeslee JJ, Novák O, Zažímalová E, Napier R, Boerjan W, Vanholme B (2017) cis-Cinnamic acid is a novel, natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiol 173:552–565

    Article  CAS  PubMed  Google Scholar 

  • Stirk WA, Bálint P, Tarkowská D, Novák O, Strnad M, Ördög V, van Staden J (2013) Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiol Biochem 70:348–353

    Article  CAS  PubMed  Google Scholar 

  • Stirk WA, Bálint P, Tarkowská D, Novák O, Maróti G, Ljung K, Turečková V, Strnad M, Ördög V, van Staden J (2014) Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiol Biochem 79:66–76

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu SH (2011) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci 2:119

    CAS  PubMed  Google Scholar 

  • Thakur S, Choudhary S, Majeed A, Singh A, Bhardwaj P (2020) Insights into the molecular mechanism of arsenic phytoremediation. J Plant Growth Regul 39:532–543

    Article  CAS  Google Scholar 

  • Tu T, Zheng S, Ren P, Meng X, Zhao J, Chen Q, Li C (2021) Coordinated cytokinin signaling and auxin biosynthesis mediates arsenate-induced root growth inhibition. Plant Physiol 185:1166–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S (2020a) Thiourea supplementation mediated reduction of grain arsenic in rice (Oryza sativa L.) cultivars: a two year field study. J Hazard Mater 407:124368

    Google Scholar 

  • Upadhyay MK, Majumdar A, Kumar JS, Srivastava S (2020b) Arsenic in rice agro-ecosystem: solutions for safe and sustainable rice production. Front Sustain Food Syst 4:53

    Article  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma G, Srivastava D, Narayan S, Shirke PA, Chakrabarty D (2020) Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.). Ecotoxicol Environ Saf 201:110735

    Google Scholar 

  • Waalkes MP, Liu J, Ward JM, Diwan BA (2004) Mechanisms underlying arsenic carcinogenesis: hypersensitivity of mice exposed to inorganic arsenic during gestation. Toxicology 198:31–38

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Su H, Han L, Wang C, Sun Y, Liu F (2014) Differential expression profiles of poplar MAP kinase kinases in response to abiotic stresses and plant hormones, and overexpression of PtMKK4 improves the drought tolerance of poplar. Gene 545:141–148

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zheng L, Tang Z, Sun S, Ma JF, Huang XY, Zhao FJ (2020) OASTL-A1 functions as a cytosolic cysteine synthase and affects arsenic tolerance in rice. J Exp Bot 71:3678–3689

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang H, Zhu H, Ji W, Hou Y, Meng Y, Wen J, Mysore KS, Li X, Lin H (2021) Genome-wide identification and characterization of cytokinin oxidase/dehydrogenase family genes in Medicago truncatula. J Plant Physiol 256:153308

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei C, Ge Z, Chu W, Feng R (2015) Speciation of antimony and arsenic in the soils and plants in an old antimony mine. Environ Exp Bot 109:31–39

    Article  CAS  Google Scholar 

  • Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W (2020) Roles of nitric oxide in heavy metal stress in plants: cross-talk with phytohormones and protein S-nitrosylation. Environ Pollut 259:113943

    Article  CAS  PubMed  Google Scholar 

  • **a XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Yu JY, **e T, Li YL, Liu MJ, Guo JX, Li HL, Yu Y, Zheng CY, Chen YH, Wang G (2018) Brassinosteroids and iron plaque affect arsenic and cadmium uptake by rice seedlings grown in hydroponic solution. Biol Plant 62:362–368

    Article  CAS  Google Scholar 

  • Yabuta T, Sumiki T (1938) Communication to the editor. J Agric Chem Soc Jpn 14:1526

    Google Scholar 

  • Yadav P, Srivastava S (2021) Effect of thiourea application on root, old leaf and young leaf of two contrasting rice varieties (Oryza sativa L.) grown in arsenic contaminated soil. Environ Technol Innov 21:101368

    Google Scholar 

  • Yadav S, David A, Baluška F, Bhatla SC (2013) Rapid auxin-induced nitric oxide accumulation and subsequent tyrosine nitration of proteins during adventitious root formation in sunflower hypocotyls. Plant Signal Behav 8:1–19

    Article  Google Scholar 

  • Yadav P, Srivastava S, Patil T, Raghuvanshi R, Srivastava AK, Suprasanna P (2021) Tracking the time-dependent and tissue-specific processes of arsenic accumulation and stress responses in rice (Oryza sativa L.). J Hazard Mater 406:124307

    Google Scholar 

  • Yadu B, Chandrakar V, Tamboli R, Keshavkant S (2019) Dimethylthiourea antagonizes oxidative responses by up-regulating expressions of pyrroline-5-carboxylate synthetase and antioxidant genes under arsenic stress. Int J Environ Sci Technol 16:8401–8410

    Article  CAS  Google Scholar 

  • Yaish MW (2017) Epigenetic modifications associated with abiotic and biotic stresses in plants: an implication for understanding plant evolution. Front Plant Sci 8:1983

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasaki H, Ogura MP, Kingjoe KA, Cohen MF (2019) D-cysteine-induced rapid root abscission in the water fern Azolla pinnata: implications for the linkage between d-amino acid and reactive sulfur species (RSS) in plant environmental responses. Antioxidants 8:1–11

    Article  Google Scholar 

  • Yan S, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneyama K, Kisugi T, **e X, Yoneyama K (2013) Chemistry of strigolactones: why and how do plants produce so many strigolactones? In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1. Wiley, Hoboken, NJ, pp 373–379

    Chapter  Google Scholar 

  • Zemanová V, Popov M, Pavlíková D, Kotrba P, Hnilička F, Česká J, Pavlík M (2020) Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biol 20:130

    Google Scholar 

  • Zemanová V, Pavlíková D, Hnilička P, Pavlík M, Zámečníková H, Hlavsa T (2021) A comparison of the photosynthesis response to arsenic stress in two Pteris cretica ferns. Photosynthetica 59:228–236

    Article  Google Scholar 

  • Zhang H, Zhu H, Pan Y, Yu Y, Luan S, Li L (2014) A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Mol Plant 7:1522–1532

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Martinoia E, Lee Y (2018) Vacuolar transporters for cadmium and arsenic in plants and their applications in phytoremediation and crop development. Plant Cell Physiol 59:1317–1325

    CAS  PubMed  Google Scholar 

  • Zhao L, He J, Wang X, Zhang L (2008) Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J Plant Physiol 165:182–191

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M (2020) Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 34:101475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239–240:302–307

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penna Suprasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, A., Srivastava, S., Mishra, V., Kumar, K., Suprasanna, P. (2024). Arsenic Induced Toxicity and Regulation Through Metabolomic, Hormonal and Signaling Hubs in Plants. In: Aftab, T. (eds) Metals and Metalloids in Plant Signaling. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-59024-5_9

Download citation

Publish with us

Policies and ethics

Navigation