Abstract

Molecular recognition, a fundamental process in biological systems, plays a pivotal role in various chemical, biological and analytical contexts. This phenomenon involves the specific interaction between molecules, often guided by complementary structural features, functional groups or electrostatic forces. Molecularly Imprinted Polymers (MIPs), a versatile class of materials, have emerged as synthetic counterparts to natural recognition elements. The concept of MIPs involves the rational design and synthesis of polymers with selective binding sites that mimic the recognition patterns observed in biological systems. Through a templated polymerization process, MIPs are created with imprinted sites tailored to bind target molecules with high selectivity and affinity. These imprinted sites confer unique properties upon MIPs, enabling them to recognize and capture target analytes from complex matrices such as industrial streams, environmental samples and biological fluids. As a result, MIPs have a bright future in various fields due to their unique properties and versatile applications including medical, biotechnology, pharmaceuticals and environmental monitoring. This chapter provides an overview of molecular recognition principles, followed by an exploration of the concept of MIPs, underscoring their relevance and potential for molecular selective recognition and sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubakar L, Yusof NA, Abdullah AH, Mohammad F, Wahid MH, Ismail S, Abdul RZ, Al-Lohedan HA, Soleiman AA (2023) Molecularly imprinted polymer-based nanoporous carbon nanocomposite for effective adsorption of Hg (II) ions from aqueous suspensions. Separations 10:454

    Article  CAS  Google Scholar 

  • Aghoutane Y, Diouf A, Österlund L, Bouchikhi B, El Bari N (2020) Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry 132:107404

    Article  CAS  PubMed  Google Scholar 

  • Akgönüllü S, Kılıç S, Esen C, Denizli A (2023) Molecularly imprinted polymer-based sensors for protein detection. Polymers 15:629

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali GK, Omer KM (2022) Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio (chemical) sensing applications. Review. Talanta 236:122878

    Article  CAS  PubMed  Google Scholar 

  • Arabi M, Chen L (2022) Technical challenges of molecular-imprinting-based optical sensors for environmental pollutants. Langmuir 38:5963–5967

    Article  CAS  PubMed  Google Scholar 

  • Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33:2100543

    Article  CAS  Google Scholar 

  • Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Macromol Chem 182:687–692

    Article  CAS  Google Scholar 

  • Ayankojo AG, Reut J, Ciocan V, Öpik A, Syritski V (2020) Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 209:120502

    Article  CAS  PubMed  Google Scholar 

  • Ayankojo AG, Reut J, Nguyen VBC, Boroznjak R, Syritski V (2022) Advances in detection of antibiotic pollutants in aqueous media using molecular imprinting technique—a review. Biosensors 12:441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayivi RD, Obare SO, Wei J (2023) Molecularly imprinted polymers as chemosensors for organophosphate pesticide detection and environmental applications. TrAC, Trends Anal Chem 117231

    Google Scholar 

  • Babine RE, Bender SL (1997) Molecular recognition of protein-ligand complexes: applications to drug design. Chem Rev 97:1359–1472

    Article  CAS  PubMed  Google Scholar 

  • Bagheri AR, Aramesh N, Khan AA, Gul I, Ghotekar S, Bilal M (2021) Molecularly imprinted polymers-based adsorption and photocatalytic approaches for mitigation of environmentally-hazardous pollutants-a review. J Environ Chem Eng 9:104879

    Article  CAS  Google Scholar 

  • Basak S, Venkatram R, Singhal RS (2022) Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 139:109074

    Article  Google Scholar 

  • Behncken SN, Waters MJ (1999) Molecular recognition events involved in the activation of the growth hormone receptor by growth hormone. J Mol Recognit 12:355–362

    Article  CAS  PubMed  Google Scholar 

  • BelBruno JJ (2018) Molecularly imprinted polymers. Chem Rev 119:94–119

    Article  PubMed  Google Scholar 

  • Bodoki AE, Iacob B-C, Dinte E, Vostinaru O, Samoila O, Bodoki E (2021) Perspectives of molecularly imprinted polymer-based drug delivery systems in ocular therapy. Polymers 13:3649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonatti AF, De Maria C, Vozzi G (2021) Molecular imprinting strategies for tissue engineering applications: a review. Polymers 13:548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozal-Palabiyik B, Erkmen C, Uslu B (2020) Molecularly imprinted electrochemical sensors: analytical and pharmaceutical applications based on ortho-phenylenediamine polymerization. Curr Pharm Anal 16:350–366

    Article  CAS  Google Scholar 

  • Bräuer B, Unger C, Werner M, Lieberzeit PA (2021) Biomimetic sensors to detect bioanalytes in real-life samples using molecularly imprinted polymers: a review. Sensors 21:5550

    Article  PubMed  PubMed Central  Google Scholar 

  • Caldara M, Lowdon JW, Royakkers J, Peeters M, Cleij TJ, Diliën H, Eersels K, van Grinsven B (2022) A molecularly imprinted polymer-based thermal sensor for the selective detection of melamine in milk samples. Foods 11:2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Feng T, Xu J, Xue C (2019) Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens Bioelectron 141:111447

    Article  CAS  PubMed  Google Scholar 

  • Chatterji D (2016) Basics of molecular recognition. CRC Press, pp 1–15

    Google Scholar 

  • Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Tian X, He W, Li J, Feng Y, Pan G (2020) Emerging functional materials based on chemically designed molecular recognition. BMC Mater 2:1–22

    Article  Google Scholar 

  • Ciferri A (2021) Critical issues in molecular recognition: the enzyme-substrate association. Soft Matter 17:8585–8589

    Article  CAS  PubMed  Google Scholar 

  • Cormack PA, Elorza AZ (2004) Molecularly imprinted polymers: synthesis and characterisation. J Chromatogr B 804:173–182

    Article  CAS  Google Scholar 

  • Cowen T, Stefanucci E, Piletska E, Marrazza G, Canfarotta F, Piletsky SA (2020) Synthetic mechanism of molecular imprinting at the solid phase. Macromol 53:1435–1442

    Article  CAS  Google Scholar 

  • Decompte E, Lobaz V, Monperrus M, Deniau E, Save M (2020) Molecularly imprinted polymer colloids synthesized by miniemulsion polymerization for recognition and separation of nonylphenol. ACS Appl Polym Mater 2:3543–3556

    Article  CAS  Google Scholar 

  • Diab KE, Salama E, Hassan HS, Abd E-M, Elkady MF (2021) Biocompatible MIP-202 Zr-MOF tunable sorbent for cost-effective decontamination of anionic and cationic pollutants from waste solutions. Sci Rep 11:6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Lyu Z, Niu X, Zhou Y, Liu D, Falahati M, Du D, Lin Y (2020) Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: a review. Biosens Bioelectron 149:111830

    Article  CAS  PubMed  Google Scholar 

  • Divya M, Rajput Y, Sharma R, Divya K (2023) Molecularly imprinted polymers for the extraction and sensing of vitamins. In: Molecularly imprinted polymers for environmental monitoring: fundamentals and applications. IOP Publishing Bristol, UK, pp 8–26

    Google Scholar 

  • Dong C, Shi H, Han Y, Yang Y, Wang R, Men J (2021) Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J 145:110231

    Article  CAS  Google Scholar 

  • Dong Q, Yang M, Wang Y, Guan Y, Zhang W, Zhang Y (2023) Peptide-crosslinked molecularly imprinted polymers for efficient separation of immunoglobulin G from human serum. Biomater Sci 11:1398–1407

    Article  CAS  PubMed  Google Scholar 

  • Du W, Lei C, Zhang S, Bai G, Zhou H, Sun M, Fu Q, Chang C (2014) Determination of clenbuterol from pork samples using surface molecularly imprinted polymers as the selective sorbents for microextraction in packed syringe. J Pharm Biomed Anal 91:160–168

    Article  CAS  PubMed  Google Scholar 

  • Elaine AA, Krisyanto SI, Hasanah AN (2022) Dual-functional monomer MIPs and their comparison to mono-functional monomer MIPs for SPE and as sensors. Polymers 14:3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ensafi AA, Nasr-Esfahani P (2021) Fundamental aspects of molecular imprinting. In: Molecularly imprinted polymer composites. Elsevier, pp 5–20

    Google Scholar 

  • Ensafi AA, Kazemifard N, Dehkordi ZS (2021) Parameters that affect molecular imprinting polymers. In: Molecularly imprinted polymer composites. Elsevier, pp 21–48

    Google Scholar 

  • Erdem Ö, Eş I, Saylan Y, Atabay M, Gungen MA, Ölmez K, Denizli A, Inci F (2023) In situ synthesis and dynamic simulation of molecularly imprinted polymeric nanoparticles on a micro-reactor system. Nat Commun 14:4840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esfandyari-Manesh M, Javanbakht M, Atyabi F, Badiei A, Dinarvand R (2011) Effect of porogenic solvent on the morphology, recognition and release properties of carbamazepine-molecularly imprinted polymer nanospheres. J Appl Polym Sci 121:1118–1126

    Article  CAS  Google Scholar 

  • Frigoli M, Lowdon JW, Caldara M, Arreguin-Campos R, Sewall J, Cleij TJ, Diliën H, Eersels K, Van Grinsven B (2023) Thermal pyocyanin sensor based on molecularly imprinted polymers for the Indirect detection of Pseudomonas aeruginosa. ACS Sens 8:353–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs Y, Soppera O, Haupt K (2012) Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—a review. Anal Chim Acta 717:7–20

    Article  CAS  PubMed  Google Scholar 

  • Gellman SH (1997) Introduction: molecular recognition. Chem Rev 97:1231–1232

    Article  CAS  PubMed  Google Scholar 

  • Gkika DA, Tolkou AK, Lambropoulou DA, Bikiaris DN, Kokkinos P, Kalavrouziotis IK, Kyzas GZ (2024) Application of molecularly imprinted polymers (MIPs) as environmental separation tools. RSC Appl Polym 2:127–148

    Google Scholar 

  • Hasanah AN, Safitri N, Zulfa A, Neli N, Rahayu D (2021) Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials. Molecules 26:5612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haupt K (2010) Plastic antibodies. Nat Mater 9:612–614

    Article  CAS  PubMed  Google Scholar 

  • Haupt K, Linares AV, Bompart M, Bui BTS (2011) Molecularly imprinted polymers. In: Molecular imprinting. Springer, Berlin, Heidelberg, pp 1–28

    Google Scholar 

  • He Q, Liang J-J, Chen L-X, Chen S-L, Zheng H-L, Liu H-X, Zhang H-J (2020) Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: molecular simulation, adsorption properties, and mechanisms. Water Res 168:115164

    Article  CAS  PubMed  Google Scholar 

  • Heath JR, Ratner MA (2003) Molecular electronics. Phys Today 56:43–49

    Article  CAS  Google Scholar 

  • Huang C, Wang H, Ma S, Bo C, Ou J, Gong B (2021) Recent application of molecular imprinting technique in food safety. J Chromatogr A 1657:462579

    Article  CAS  PubMed  Google Scholar 

  • Idil N, Bakhshpour M, Perçin I, Mattiasson B, Denizli A (2021) Molecular imprinting-based sensing platforms for recognition of microorganisms. In: Molecular imprinting for nanosensors and other sensing applications. Elsevier, pp 255–281

    Google Scholar 

  • Işık D, Şahin S, Caglayan MO, Üstündağ Z (2021) Electrochemical impedimetric detection of kanamycin using molecular imprinting for food safety. Microchem J 160:105713

    Article  Google Scholar 

  • Iturralde I, Paulis M, Leiza J (2014) The effect of the crosslinking agent on the performance of propranolol imprinted polymers. Eur Polym J 53:282–291

    Article  CAS  Google Scholar 

  • Janiak DS, Kofinas P (2007) Molecular imprinting of peptides and proteins in aqueous media. Anal Bioanal Chem 389:399–404

    Article  CAS  PubMed  Google Scholar 

  • Justino CI, Freitas AC, Pereira R, Duarte AC, Santos TAR (2015) Recent developments in recognition elements for chemical sensors and biosensors. TrAC, Trends Anal Chem 68:2–17

    Article  CAS  Google Scholar 

  • Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM (2021) Molecularly imprinted polymers (MIPs) in sensors for environmental and biomedical applications: a review. Molecules 26:6233

    Google Scholar 

  • Kandimalla VB, Ju H (2004) Molecular imprinting: a dynamic technique for diverse applications in analytical chemistry. Anal Bioanal Chem 380:587–605

    Article  CAS  PubMed  Google Scholar 

  • Karadurmus L, Bilge S, Sınağ A, Ozkan SA (2022) Molecularly imprinted polymer (MIP)-based sensing for detection of explosives: current perspectives and future applications. TrAC, Trends Anal Chem 155:116694

    Google Scholar 

  • Kidakova A, Boroznjak R, Reut J, Öpik A, Saarma M, Syritski V (2020) Molecularly imprinted polymer-based SAW sensor for label-free detection of cerebral dopamine neurotrophic factor protein. Sens Actuators B Chem 308:127708

    Article  CAS  Google Scholar 

  • Krengel U, Bousquet PA (2014) Molecular recognition of gangliosides and their potential for cancer immunotherapies. Front Immunol 5:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanza F, Sellergren B (2004) Molecularly imprinted polymers via high-throughput and combinatorial techniques. Macromol Rapid Commun 25:59–68

    Article  CAS  Google Scholar 

  • Lee JH, Prud’Homme RK, Aksay IA (2001) Cure depth in photopolymerization: experiments and theory. J Mater Res 16:3536–3544

    Article  CAS  Google Scholar 

  • Lehotay SJ, Chen Y (2018) Hits and misses in research trends to monitor contaminants in foods. Anal Bioanal Chem 410:5331–5351

    Article  CAS  PubMed  Google Scholar 

  • Leibl N, Haupt K, Gonzato C, Duma L (2021) Molecularly imprinted polymers for chemical sensing: a tutorial review. Chemosensors 9:123

    Article  CAS  Google Scholar 

  • Li R, Feng Y, Pan G, Liu L (2019) Advances in molecularly imprinting technology for bioanalytical applications. Sensors 19:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Luo L, Nie M, Davenport A, Li Y, Li B, Choy K-L (2022) A graphene nanoplatelet-polydopamine molecularly imprinted biosensor for ultratrace creatinine detection. Biosens Bioelectron 216:114638

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Luo L, Kong Y, Li Y, Wang Q, Wang M, Li Y, Davenport A, Li B (2024) Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens Bioelectron 116018

    Google Scholar 

  • Lusina A, Cegłowski M (2022) Molecularly imprinted polymers as state-of-the-art drug carriers in hydrogel transdermal drug delivery applications. Polymers 14:640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Row KH (2018) Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent. J Chromatogr A 1559:78–85

    Article  CAS  PubMed  Google Scholar 

  • Madikizela LM, Ncube S, Nomngongo PN, Pakade VE (2022) Molecular imprinting with deep eutectic solvents: synthesis, applications, their significance, and benefits. J Mol Liq 362:119696

    Article  CAS  Google Scholar 

  • Mahony J, Nolan K, Smyth M, Mizaikoff B (2005) Molecularly imprinted polymers—potential and challenges in analytical chemistry. Anal Chim Acta 534:31–39

    Article  CAS  Google Scholar 

  • Malik MI, Shaikh H, Mustafa G, Bhanger MI (2019) Recent applications of molecularly imprinted polymers in analytical chemistry. Sep Purif Rev 48:179–219

    Article  CAS  Google Scholar 

  • Mayes AG, Mosbach K (1997) Molecularly imprinted polymers: useful materials for analytical chemistry? TrAC, Trends Anal Chem 16:321–332

    Article  CAS  Google Scholar 

  • McCluskey A, Holdsworth CI, Bowyer MC (2007) Molecularly imprinted polymers (MIPs): sensing, an explosive new opportunity? Org Biomol Chem 5:3233–3244

    Article  CAS  PubMed  Google Scholar 

  • Mehmandoust M, Erk N, Naser M, Soylak M (2023) Molecularly imprinted polymer film loaded on the metal–organic framework with improved performance using stabilized gold-doped graphite carbon nitride nanosheets for the single-step detection of Fenamiphos. Food Chem 404:134627

    Article  CAS  PubMed  Google Scholar 

  • Morsi SM, Abd El-Aziz ME, Mohamed HA (2023) Smart polymers as molecular imprinted polymers for recognition of target molecules. Int J Polym Mater Polym Biomater 72:612–635

    Article  CAS  Google Scholar 

  • Moyer BA, Custelcean R, Hay BP, Sessler JL, Bowman-James K, Day VW, Kang S-O (2013) A case for molecular recognition in nuclear separations: sulfate separation from nuclear wastes. Inorg Chem 52:3473–3490

    Article  CAS  PubMed  Google Scholar 

  • Muhammad T, Nur Z, Piletska EV, Yimit O, Piletsky SA (2012) Rational design of molecularly imprinted polymer: the choice of cross-linker. Analyst 137:2623–2628

    Article  CAS  PubMed  Google Scholar 

  • Mujahid A, Afzal A, Dickert FL (2023) Transitioning from supramolecular chemistry to molecularly imprinted polymers in chemical sensing. Sensors 23:7457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muratsugu S, Shirai S, Tada M (2020) Recent progress in molecularly imprinted approach for catalysis. Tetrahedron Lett 61:151603

    Article  CAS  Google Scholar 

  • Murdaya N, Triadenda AL, Rahayu D, Hasanah AN (2022) A review: using multiple templates for molecular imprinted polymer: is it good? Polymers 14:4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa YL, Leese HS (2023) Fabrication of a lactate-specific molecularly imprinted polymer toward disease detection. ACS Omega 8:8732–8742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndunda EN (2020) Molecularly imprinted polymers—a closer look at the control polymer used in determining the imprinting effect: a mini review. J Mol Recognit 33:e2855

    Article  CAS  PubMed  Google Scholar 

  • Nishchaya K, Rai VK, Bansode H (2023) Methacrylic acid as a potential monomer for molecular imprinting: a review of recent advances. Results Mater 18:100379

    Article  CAS  Google Scholar 

  • Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L (2022) Greenificated molecularly imprinted materials for advanced applications. Adv Mater 34:2203154

    Article  CAS  Google Scholar 

  • Özbek MA, Özgür E, Bereli N, Denizli A (2023) Molecular imprinted based microcryogels for thrombin purification. J Chromatogr B 1228:123848

    Article  Google Scholar 

  • Öztürk G, Saylan Y, Denizli A (2021) Designing composite cryogel carriers for tyrosine adsorption. Sep Purif Technol 254:117622

    Article  Google Scholar 

  • Paleos CM, Sideratou Z, Tsiourvas D (2001) Molecular recognition of complementary liposomes in modeling cell-cell recognition. ChemBioChem 2:305–310

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Singh S, Singh SP (2023) Molecularly imprinted polymers: applications and challenges in biological and environmental sample analysis. In: Singh M (ed) Molecularly imprinted polymers (MIPs). pp 321–344

    Google Scholar 

  • Paruli EI, Soppera O, Haupt K, Gonzato C (2021) Photopolymerization and photostructuring of molecularly imprinted polymers. ACS Appl Polym Mater 3:4769–4790

    Article  CAS  Google Scholar 

  • Peng Y, Su H (2015) Recent innovations of molecularly imprinted electrochemical sensors based on electropolymerization technique. Curr Anal Chem 11:307–317

    Article  CAS  Google Scholar 

  • Persch E, Dumele O, Diederich F (2015) Molecular recognition in chemical and biological systems. Angew Chem Int Ed 54:3290–3327

    Article  CAS  Google Scholar 

  • Piletsky S (2006) Molecular imprinting of polymers. CRC Press Boca Raton, FL, pp 64–70

    Book  Google Scholar 

  • Piletsky SA, Alcock S, Turner AP (2001) Molecular imprinting: at the edge of the third millennium. Trends Biotechnol 19:9–12

    Article  CAS  PubMed  Google Scholar 

  • Pirondini L, Dalcanale E (2007) Molecular recognition at the gas–solid interface: a powerful tool for chemical sensing. Chem Soc Rev 36:695–706

    Article  CAS  PubMed  Google Scholar 

  • Pratama KF, Manik MER, Rahayu D, Hasanah AN (2020) Effect of the molecularly imprinted polymer component ratio on analytical performance. Chem Pharm Bull 68:1013–1024

    Article  CAS  Google Scholar 

  • Rahman Au, Iqbal M, Rahman Fu, Fu D, Yaseen M, Lv Y, Omer M, Garver M, Yang L, Tan T (2012) Synthesis and characterization of reactive macroporous poly (glycidyl methacrylate‐triallyl isocyanurate‐ethylene glycol dimethacrylate) microspheres by suspension polymerization: effect of synthesis variables on surface area and porosity. J Appl Polym Sci 124:915–926

    Google Scholar 

  • Rahman S, Bozal-Palabiyik B, Unal DN, Erkmen C, Siddiq M, Shah A, Uslu B (2022) Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants. Trends Environ Anal Chem 36:e00176

    Article  CAS  Google Scholar 

  • Rajpal S, Singh S, Mishra P, Bhakta S (2023) Role of monomer compositions for molecularly imprinted polymers (MIPs). In: Molecularly imprinted polymers (MIPs). Elsevier, pp. 81–99

    Google Scholar 

  • Raziq A, Kidakova A, Boroznjak R, Reut J, Öpik A, Syritski V (2021) Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens Bioelectron 178:113029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Refaat D, Aggour MG, Farghali AA, Mahajan R, Wiklander JG, Nicholls IA, Piletsky SA (2019) Strategies for molecular imprinting and the evolution of MIP nanoparticles as plastic antibodies—synthesis and applications. Int J Mol Sci 20:6304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roushani M, Zalpour N (2021) Selective detection of Asulam with in-situ dopamine electropolymerization based electrochemical MIP sensor. React Funct Polym 169:105069

    Article  CAS  Google Scholar 

  • Saylan Y (2023) Unveiling the pollution of bacteria in water samples through optic sensor. Microchem J 193:109057

    Article  CAS  Google Scholar 

  • Saylan Y, Denizli A (2019) Molecularly imprinted polymer-based microfluidic systems for point-of-care applications. Micromachines 10:766

    Article  PubMed  PubMed Central  Google Scholar 

  • Saylan Y, Denizli A (2020) Advances in molecularly imprinted systems: materials, characterization methods and analytical applications. Curr Anal Chem 16:196–207

    Article  CAS  Google Scholar 

  • Saylan Y, Erdem Ö, Inci F, Denizli A (2020a) Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics 5:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saylan Y, Göktürk l, Pospiskova K, Safarik I, Denizli A (2020b) Magnetic bacterial cellulose nanofibers for nucleoside recognition. Cellulose 27:9479–9492

    Google Scholar 

  • Saylan Y, Akgönüllü S, Denizli A (2022) Preparation of magnetic nanoparticles—assisted plasmonic biosensors with metal affinity for interferon-α detection. Mater Sci Eng B 280:115687

    Article  CAS  Google Scholar 

  • Saylan Y, Altıntaş Ö, Denizli A (2023) Microfluidic-based molecularly imprinted polymers-integrated optic sensors. Results Opt 13:100541

    Article  Google Scholar 

  • Saylan Y, Kılıç S, Denizli A (2024) Biosensing applications of molecularly imprinted-polymer-based nanomaterials. Processes 12:177

    Article  CAS  Google Scholar 

  • Schmidt RH, Belmont A-S, Haupt K (2005) Porogen formulations for obtaining molecularly imprinted polymers with optimized binding properties. Anal Chim Acta 542:118–124

    Article  CAS  Google Scholar 

  • Shama NA, Aşır Sl, Göktürk I, Yılmaz F, Türkmen D, Denizli A (2023) Electrochemical detection of cortisol by silver nanoparticle-modified molecularly imprinted polymer-coated pencil graphite electrodes. ACS Omega 8:29202–29212

    Google Scholar 

  • Shimizu KD, Stephenson CJ (2010) Molecularly imprinted polymer sensor arrays. Curr Opin Chem Biol 14:743–750

    Article  CAS  PubMed  Google Scholar 

  • Sibrian-Vazquez M, Spivak DA (2004) Molecular imprinting made easy. J Am Chem Soc 126:7827–7833

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Singh S, Singh SP, Patel SS (2020) Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix. Trends Environ Anal Chem 27:e00092

    Article  CAS  Google Scholar 

  • Skerra A (2007) Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18:295–304

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Li J, Lu W, Li B, Yang G, Bi Y, Arabi M, Wang X, Ma J, Chen L (2022) Molecularly imprinted polymers based materials and their applications in chromatographic and electrophoretic separations. TrAC, Trends Anal Chem 146:116504

    Google Scholar 

  • Soufi GJ, Iravani S, Varma RS (2021) Molecularly imprinted polymers for the detection of viruses: challenges and opportunities. Analyst 146:3087–3100

    Article  Google Scholar 

  • Spivak DA (2005) Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv Drug Deliv Rev 57:1779–1794

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Li J, Li X, Liu C, Wang H, Huo P, Yan sheng Y (2019) Molecularly imprinted Ag/Ag3VO4/g-C3N4 Z-scheme photocatalysts for enhanced preferential removal of tetracycline. J Colloid Interface Sci 552:271–286

    Google Scholar 

  • Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M (2023) Recent molecularly imprinted polymers applications in bioanalysis. Chem Pap 77:619–655

    Article  CAS  Google Scholar 

  • Tarannum N, Khatoon S, Dzantiev BB (2020) Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: a critical review. Food Control 118:107381

    Article  CAS  Google Scholar 

  • Tashiro S, Shionoya M (2020) Novel porous crystals with macrocycle-based well-defined molecular recognition sites. Acc Chem Res 53:632–643

    Article  CAS  PubMed  Google Scholar 

  • Tse Sum Bui B, Mier A, Haupt K (2023) Molecularly imprinted polymers as synthetic antibodies for protein recognition: the next generation. Small 19:2206453

    Article  CAS  Google Scholar 

  • Turiel E, Martín-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668:87–99

    Article  CAS  PubMed  Google Scholar 

  • Vargas-Berrones K, Ocampo-Perez R, Rodríguez-Torres I, Medellín-Castillo NA, Flores-Ramírez R (2023) Molecularly imprinted polymers (MIPs) as efficient catalytic tools for the oxidative degradation of 4-nonylphenol and its by-products. Environ Sci Pollut Res 30:90741–90756

    Article  CAS  Google Scholar 

  • Villar-Navarro M, Martín-Valero MJ, Fernández-Torres RM, Callejón-Mochón M, Bello-López MÁ (2017) Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs). J Chromatogr B Biomed Appl 1044:63–69

    Article  Google Scholar 

  • Wackerlig J, Schirhagl R (2016) Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal Chem 88:250–261

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu H, Sun Z, Zhao S, Zhou Y, Li J, Cai T, Gong B (2020) Monodisperse restricted access material with molecularly imprinted surface for selective solid-phase extraction of 17β-estradiol from milk. J Sep Sci 43:3520–3533

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Pagett M, Zhang W (2023a) Molecularly imprinted polymer (MIP) based electrochemical sensors and their recent advances in health applications. Sens Actuators Rep 5:100153

    Article  Google Scholar 

  • Wang M, Qiu J, Zhu C, Hua Y, Yu J, Jia L, Xu J, Li J, Li Q (2023b) A fluorescent molecularly imprinted polymer-coated paper sensor for on-site and rapid detection of glyphosate. Molecules 28:2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang L, Zeng J, Hu X, Wang X, Yu L, Wang D, Cheng L, Ahmed R, Romanovski V (2023c) Multi-templates molecularly imprinted polymers for simultaneous recognition of multiple targets: from academy to application. TrAC, Trends Anal Chem 166:117173

    Google Scholar 

  • Wardani NI, Kangkamano T, Wannapob R, Kanatharana P, Thavarungkul P, Limbut W (2023) Electrochemical sensor based on molecularly imprinted polymer cryogel and multiwalled carbon nanotubes for direct insulin detection. Talanta 254:124137

    Article  CAS  PubMed  Google Scholar 

  • Whitcombe MJ, Kirsch N, Nicholls IA (2014) Molecular imprinting science and technology: a survey of the literature for the years 2004–2011. J Mol Recognit 27:297–401

    Article  CAS  PubMed  Google Scholar 

  • Włoch M, Datta J (2019) Synthesis and polymerisation techniques of molecularly imprinted polymers. In: Comprehensive analytical chemistry. Elsevier, pp 17–40

    Google Scholar 

  • Wulff G (2013) Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Mikrochim Acta 180:1359–1370

    Article  CAS  Google Scholar 

  • **e H, Sun Y, Zhang R, Zhang Y, Zhao M (2023) Surface imprinted bio-nanocomposites for affinity separation of a cellular DNA repair protein. Biopolymers 114:e23537

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Miao H, Wang J, Pan G (2020a) Molecularly imprinted synthetic antibodies: from chemical design to biomedical applications. Small 16:1906644

    Article  CAS  Google Scholar 

  • Xu Y, Hassan MM, Ali S, Li H, Chen Q (2020b) SERS-based rapid detection of 2, 4-dichlorophenoxyacetic acid in food matrices using molecularly imprinted magnetic polymers. Mikrochim Acta 187:1–9

    Article  Google Scholar 

  • Yan H, Row KH (2006) Characteristic and synthetic approach of molecularly imprinted polymer. Int J Mol Sci 7:155–178

    Article  CAS  Google Scholar 

  • Zaidi SA (2016) Latest trends in molecular imprinted polymer based drug delivery systems. RSC Adv 6:88807–88819

    Article  CAS  Google Scholar 

  • Zaidi SA (2020) Molecular imprinting: a useful approach for drug delivery. Mater Sci Energy Technol 3:72–77

    CAS  Google Scholar 

  • Zembrzuska D, Kalecki J, Cieplak M, Lisowski W, Borowicz P, Noworyta K, Sharma PS (2019) Electrochemically initiated co-polymerization of monomers of different oxidation potentials for molecular imprinting of electroactive analyte. Sens Actuators B Chem 298:126884

    Article  CAS  Google Scholar 

  • Zhang Y, Song D, Lanni LM, Shimizu KD (2010) Importance of functional monomer dimerization in the molecular imprinting process. Macromol 43:6284–6294

    Article  CAS  Google Scholar 

  • Zhang W, Zhang Y, Wang R, Zhang P, Zhang Y, Randell E, Zhang M, Jia Q (2022) A review: development and application of surface molecularly imprinted polymers toward amino acids, peptides, and proteins. Anal Chim Acta 1234:340319

    Article  CAS  PubMed  Google Scholar 

  • Zhi K, Li Z, Luo H, Ding Y, Chen F, Tan Y, Liu H (2023) Selective adsorption of quercetin by the Sol-Gel surface molecularly imprinted polymer. Polymers 15:905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Xu Z, Liu Z (2022) Molecularly imprinting–aptamer techniques and their applications in molecular recognition. Biosens 12:576

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Yeşeren Saylan and Özge Altıntaş thank to Scientific and Technological Research Council of Turkey (TÜBİTAK) Directorate of Science Fellowships and Grant (BİDEB) 2247-D (Project No: 121C226) Programme. Dr. Özgecan Erdem gratefully acknowledges the support of the TÜBİTAK 2218-National Postdoctoral Research Fellowship Program (Project No:121C431). Dr. Fatih Inci gratefully acknowledges the support of TÜBİTAK 2232−International Fellowship for Outstanding Researchers (project no: 118C254), GEBIP Award from Turkish Academy of Sciences (TÜBA), and BAGEP Award from Science Academy. This publication has been produced benefiting from the 2232 International Fellowship for Outstanding Researchers Program of TÜBİTAK (Project No: 118C254). However, the entire responsibility for the article belongs to the owner of the article. The financial support received from TÜBİTAK does not mean that the content of the publication is approved in a scientific sense by TÜBİTAK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Denizli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saylan, Y., Altıntaş, Ö., Erdem, Ö., Inci, F., Denizli, A. (2024). Overview of Molecular Recognition and the Concept of MIPs. In: Patra, S., Sillanpaa, M. (eds) Molecularly Imprinted Polymers as Artificial Antibodies for the Environmental Health. Springer, Cham. https://doi.org/10.1007/978-3-031-58995-9_1

Download citation

Publish with us

Policies and ethics

Navigation