Fundamentals of Industrial Sludge: Trends and Challenges

  • Chapter
  • First Online:
Recent Trends in Management and Utilization of Industrial Sludge

Abstract

Industrial sludge is the refuse produced by treating industrial effluent, which generates hundreds of millions of tons of sludge annually globally. This chapter discusses the fundamentals, trends, and challenges of industrial sludge. First, industrial sludge’s definition, characteristics, and significance will be discussed, emphasising its volume reduction and organic waste stabilisation. Second, the numerous varieties of industrial sludge will be presented based on their origins and composition. Third, various technologies for treating industrial sludge will be investigated, from conventional treatment and disposal methods to emerging and innovative technologies. In this chapter, we will also discuss several obstacles that can be surmounted by implementing various solutions while managing industrial sludge. Lastly, the discussion will be based on implementing futuristic trends and technologies to promote a balance between the economy and the environment when sustainable development is a primary objective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agabo-García, C., Pérez, M., Rodríguez-Morgado, B., Parrado, J., & Solera, R. (2019). Biomethane production improvement by enzymatic pre-treatments and enhancers of sewage sludge anaerobic digestion. Fuel, 255, 115713.

    Article  Google Scholar 

  • Agoro, M. A., Adeniji, A. O., Adefisoye, M. A., & Okoh, O. O. (2020). Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province, South Africa. Water, 12(10), 2746.

    Article  CAS  Google Scholar 

  • Ahmad, T., Ahmad, K., & Alam, M. (2016). Sustainable management of water treatment sludge through the 3’R’ concept. Journal of Cleaner Production, 124, 1–13.

    Article  Google Scholar 

  • Ahmadi, M., Bayati, N., Babaei, A., & Teymouri, P. (2013). Sludge characterization of an industrial wastewater treatment plant, Iran. Iranian Journal of Health Sciences, 1, 10–18. https://doi.org/10.18869/acadpub.jhs.1.2.10

    Article  Google Scholar 

  • Akter, B., Shammi, M., Akbor, M. A., Yasmin, S., Nahar, A., Akhter, S., Jolly, Y. N., & Uddin, M. K. (2023). Preparation and characterisation of biochar: A case study on textile and food industry sludge management. Case Studies in Chemical and Environmental Engineering, 7, 100282.

    Article  CAS  Google Scholar 

  • Al-Asheh, S., Bagheri, M., & Aidan, A. (2021). Membrane bioreactor for wastewater treatment: A review. Case Studies in Chemical and Environmental Engineering, 4, 100109.

    Article  CAS  Google Scholar 

  • Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.

    Article  CAS  Google Scholar 

  • Alwaeli, M., Gołaszewski, J., Niesler, M., Pizoń, J., & Gołaszewska, M. (2020). Recycle option for metallurgical sludge waste as a partial replacement for natural sand in mortars containing CSA cement to save the environment and natural resources. Journal of Hazardous Materials, 398, 123101.

    Article  CAS  Google Scholar 

  • Avila, R., Carrero, E., Vicent, T., & Blánquez, P. (2021). Integration of enzymatic pre-treatment and sludge co-digestion in biogas production from microalgae. Waste Management, 124, 254–263.

    Article  CAS  Google Scholar 

  • Azarmanesh, R., Hasani Zonoozi, M., & Ghiasinejad, H. (2020). Characterization of food waste and sewage sludge mesophilic anaerobic co-digestion under different mixing ratios of primary sludge, secondary sludge, and food waste. Biomass and Bioenergy, 139, 105610. https://doi.org/10.1016/j.biombioe.2020.105610

    Article  CAS  Google Scholar 

  • Aziz, S. Q., & Mustafa, J. (2022). Wastewater sludge characteristics, treatment techniques and energy production. Reciklaza i odrzivi razvoj, 15, 9–27.

    Article  Google Scholar 

  • Barik, D. (2019). Chapter 3 – Energy extraction from toxic waste originating from food processing industries. In D. Barik (Ed.), Energy from toxic organic waste for heat and power generation (Woodhead Publishing series in energy) (pp. 17–42). Woodhead Publishing.

    Google Scholar 

  • Baroutian, S., Eshtiaghi, N., & Gapes, D. J. (2013). Rheology of a primary and secondary sewage sludge mixture: Dependency on temperature and solid concentration. Bioresource Technology, 140, 227–233.

    Article  CAS  Google Scholar 

  • Baсhev, H., & Ivanov, B. (2022). Transforming sludge from a waste into product in circular economy of Bulgarian agriculture. Revista de coyuntura y perspectiva, 7(2), 117–148.

    Google Scholar 

  • Bedford, M. R., & Apajalahti, J. H. (2022). The role of feed enzymes in maintaining poultry intestinal health. Journal of Science of Food and Agriculture, 102, 1759–1770.

    Article  CAS  Google Scholar 

  • Bhattacharya, S. (2023). Chapter 12 – Processes and machinery. In S. Bhattacharya (Ed.), Snack foods (pp. 321–382). Academic.

    Chapter  Google Scholar 

  • Bhujbal, S. K., Ghosh, P., Vijay, V. K., Rathour, R., Kumar, M., Singh, L., & Kapley, A. (2022). Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. Science of the Total Environment, 814, 152773.

    Article  CAS  Google Scholar 

  • Byliński, H., Barczak, R. J., Gębicki, J., et al. (2019). Monitoring odours emitted from stabilised dewatered sludge subjected to ageing using proton transfer reaction–mass spectrometry. Environmental Science and Pollution Research, 26(6), 5500–5513.

    Article  Google Scholar 

  • Chan, S. S., Khoo, K. S., Chew, K. W., Ling, T. C., & Show, P. L. (2022). Recent advances biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium – A review. Bioresource Technology, 344(Part A), 126159.

    Article  CAS  Google Scholar 

  • Chandra, R., & Kumar, V. (2017a). Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in-situ phytoremediation of industrial waste. Environmental Science and Pollution Research, 24, 2605–2619. https://doi.org/10.1007/s11356-016-8022-1

    Article  CAS  Google Scholar 

  • Chandra, R., & Kumar, V. (2017b). Detection of androgenic-mutagenic compounds and potential autochthonous bacterial communities during in-situ bioremediation of post methanated distillery sludge. Frontiers in Microbiology, 8, 87. https://doi.org/10.3389/fmicb.2017.00887

    Article  Google Scholar 

  • Chen, W.-S., Chang, F.-C., Shen, Y.-H., & Tsai, M.-S. (2011). The characteristics of organic sludge/sawdust-derived fuel. Bioresource Technology, 102(9), 5406–5410.

    Article  CAS  Google Scholar 

  • Chen, K., Wang, H., Valverde-Pérez, B., Zhai, S., Vezzaro, L., & Wang, A. (2021). Optimal control towards sustainable wastewater treatment plants based on multi-agent reinforcement learning. Chemosphere, 279, 130498.

    Article  CAS  Google Scholar 

  • Chen, X., Wu, R., Sun, Y., & Jian, X. (2022). Synergistic effects on the co-pyrolysis of agricultural wastes and sewage sludge at various ratios. ACS Omega, 7(1), 1264–1272.

    Article  CAS  Google Scholar 

  • Choudhury, S. P., Saha, B., Haq, I., & Kalamdhad, A. S. (2022). Use of petroleum refinery sludge for the production of biogas as an alternative energy source: A review. In C. Hussain & S. Hait (Eds.), Advanced organic waste management (pp. 277–297). Elsevier.

    Chapter  Google Scholar 

  • Clapp, C. E., Stark, S. A., Clay, D. E., & Larson, W. E. (1986). Sewage sludge organic matter and soil properties. In Y. Chen & Y. Avnimelech (Eds.), The role of organic matter in modern agriculture. Developments in plant and soil sciences (Vol. 25). Springer.

    Google Scholar 

  • Climate Policy Watcher. (2023). Inorganic substances – Wastewater treatment. Available at: https://www.climate-policy-watcher.org/wastewater-treatment-3/inorganic-substances.html. Accessed 9 July 2023.

  • David, L. O., Nwulu, N. I., Aigbavboa, C. O., & Adepoju, O. O. (2022). Integrating fourth industrial revolution (4IR) technologies into the water, energy & food nexus for sustainable security: A bibliometric analysis. Journal of Cleaner Production, 363, 132522.

    Article  Google Scholar 

  • Despoudi, S., Bucatariu, C., Otles, S., & Kartal, C. (2021). Chapter 1 – Food waste management, valorisation, and sustainability in the food industry. In C. M. Galanakis (Ed.), Food waste recovery (2nd ed., pp. 3–19). Academic.

    Chapter  Google Scholar 

  • Devda, V., Chaudhary, K., Varjani, S., Pathak, B., Patel, A. K., Singhania, R. R., Taherzadeh, M. J., Ngo, H. H., Wong, J. W. C., Guo, W., & Chaturvedi, P. (2021). Recovery of resources from industrial wastewater employing electrochemical technologies: Status, advancements and perspectives. Bioengineered, 12(1), 4697–4718.

    Article  Google Scholar 

  • Devianti, D., Yusmanizar, Y., Syakur, S., Munawar, A. A., & Yunus, Y. (2021). Organic fertilizer from agricultural waste: Determination of phosphorus content using near infrared reflectance. Earth and Environmental Science, 644(1), 012002. https://doi.org/10.1088/1755-1315/644/1/012002

    Article  Google Scholar 

  • Di Giacomo, G., & Romano, P. (2022). Evolution and prospects in managing sewage sludge resulting from municipal wastewater purification. Energies, 15(15), 5633.

    Article  Google Scholar 

  • Dinu, L., Stefanescu, M., Balaiu, I., Cosma, C., Cristea, I., Badescu, V., & Dinu, L. (2014). Acid mine water treatment using the high-density sludge technology. Journal of Environmental Protection and Ecology, 15(4), 1700–1717.

    CAS  Google Scholar 

  • Domini, M., Bertanza, G., Vahidzadeh, R., & Pedrazzani, R. (2022). Sewage sludge quality and management for circular economy opportunities in Lombardy. Applied Sciences, 12(20), 10391. https://doi.org/10.3390/app122010391

    Article  CAS  Google Scholar 

  • Đurđević, D., Žiković, S., & Čop, T. (2022). Socio-economic, technical and environmental indicators for sustainable sewage sludge management and LEAP analysis of emissions reduction. Energies, 15(16), 6050. https://doi.org/10.3390/en15166050

    Article  Google Scholar 

  • Espinosa, R. V., Soto, M., Garcia, M. V., & Naranjo, J. E. (2021). Challenges of implementing cleaner production strategies in the food and beverage industry: Literature review. In M. V. García, F. Fernández-Peña, & C. Gordón-Gallegos (Eds.), Advances and applications in computer science, electronics and industrial engineering (Advances in intelligent systems and computing, 1307). Springer.

    Google Scholar 

  • García Aguilar, M., Jaramillo, J. F., Ddiba, D., Páez, D. C., Rueda, H., Andersson, K., & Dickin, S. (2022). Governance challenges and opportunities for implementing resource recovery from organic waste streams in urban areas of Latin America: Insights from Chía, Colombia. Sustainable Production and Consumption, 30, 53–63.

    Article  Google Scholar 

  • Gautam, M., Wankhade, K., Sarangan, G., & Sudhakar, S. (2021). Framework for addressing occupational safety of de-sludging operators: A study in two Indian cities. Journal of Environmental Management, 289, 112243.

    Article  Google Scholar 

  • Gonzalez-Flo, E., Ortiz, A., Arias, A., Díez-Montero, R., Kohlheb, N., Schauser, U.-H., García, J., & Gregersen, P. K. S. (2023). Sludge treatment wetland for treating microalgae Digestate grown in agricultural runoff: A technical, economic, and environmental assessment. Water, 15(12), 2159. https://doi.org/10.3390/w15122159

    Article  CAS  Google Scholar 

  • Górka, J., Cimochowicz-Rybicka, M., & Poproch, D. (2022). Sludge management at the Kraków-Płaszów WWTP – Case study. Sustainability, 14(13), 7982. https://doi.org/10.3390/su14137982

    Article  CAS  Google Scholar 

  • Guadalupe-Fernandez, V., De Sario, M., & Vecchi, S. (2021). Industrial odour pollution and human health: A systematic review and meta-analysis. Environmental Health, 20, 108. https://doi.org/10.1186/s12940-021-00774-3

    Article  CAS  Google Scholar 

  • Habibi, M. R., & Salam, M. A. F. Z. (2023). The Government’s role in the protection and management of the environment in the Kalimas River, Surabaya. International Journal of Law Dynamics Review, 1(1), 68–82.

    Article  Google Scholar 

  • Hakiki, R., Wikaningrum, T., & Kurniawan, T. (2019). Energy prospects of hazardous sludge from wastewater treatment facilities. In Renewable resources and biorefineries. IntechOpen.

    Google Scholar 

  • Han, Z., Qi, F., Li, R., Wang, H., & Sun, D. (2020). Health impact of odour from on-situ sewage sludge aerobic composting throughout different seasons and during anaerobic digestion with hydrolysis pre-treatment. Chemosphere, 249, 126077.

    Article  CAS  Google Scholar 

  • He, P., Wei, S., Shao, L., & Lü, F. (2018). Emission potential of volatile sulfur compounds (VSCs) and ammonia from sludge compost with different bio-stability under various oxygen levels. Waste Management, 73, 113–122.

    Article  CAS  Google Scholar 

  • Hong, E., Yeneneh, A. M., Sen, T. K., Ang, H. M., & Kayaalp, A. (2018). A comprehensive review of rheological studies of sludge from various sections of municipal wastewater treatment plants to enhance process performance. Advances in Colloid and Interface Science, 257, 19–30.

    Article  CAS  Google Scholar 

  • Hou, Y., Gan, C., Chen, R., Chen, Y., Yuan, S., & Chen, Y. (2021). Structural characteristics of aerobic granular sludge and factors that influence its stability: A mini review. Water, 13, 2726. https://doi.org/10.3390/w13192726.6

    Article  CAS  Google Scholar 

  • Hu, Q., He, Y., & Wang, F. (2021). Microwave technology: A novel approach to the transformation of natural metabolites. Chinese Medicine, 16, 87.

    Article  CAS  Google Scholar 

  • Insam, H., Gómez-Brandón, M., & Ascher-Jenull, J. (2018). Chapter 7 – Recycling of organic wastes to soil and its effect on soil organic carbon status. In C. Garcia, P. Nannipieri, & T. Hernandez (Eds.), The future of soil carbon (pp. 195–214). Academic.

    Google Scholar 

  • Iorhemen, O. T., Hamza, R. A., & Tay, J. H. (2016). Membrane Bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling. Membranes (Basel), 6(2), 33.

    Article  Google Scholar 

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.

    Article  Google Scholar 

  • Jiang, Y., Gao, F., Zhang, N., Li, J., Xu, M., & Jiang, Y. (2023). Dehydration performance of municipal sludge and its dewatering conditioning methods: A review. Industrial & Engineering Chemistry Research, 62(29), 11337–11357. https://doi.org/10.1021/acs.iecr.3c01553

    Article  CAS  Google Scholar 

  • Johnson, O. A., & Affam, A. C. (2019). Petroleum sludge treatment and disposal: A review. Environmental Engineering Research, 24(2), 191–201.

    Article  Google Scholar 

  • Jones, S. L., Gibson, K. E., & Ricke, S. C. (2021). Critical factors and emerging opportunities in food waste utilization and treatment technologies. Frontiers in Sustainable Food Systems, 5, 781537.

    Article  Google Scholar 

  • Judd, S. (2021). Sludge treatment – Pyrolysis. Sludge processing. Retrieved from https://www.sludgeprocessing.com/non-oxidative-thermochemical-treatment/pyrolysis-sludge/. Accessed 9 July 2023.

  • Kacprzak, M., Neczaj, E., Fijałkowski, K., Grobelak, A., Grosser, A., Worwag, M., Rorat, A., Brattebo, H., Almås, Å., & Singh, B. R. (2017). Sewage sludge disposal strategies for sustainable development. Environmental Research, 156, 39–46.

    Article  CAS  Google Scholar 

  • Kanagamani, K., Geethamani, P., & Narmatha, M. (2021). Hazardous Waste Management. In Environmental issues and sustainable development.

    Google Scholar 

  • Kanesalingam, B., Fernando, W. A. M., Panda, S., Jayawardena, C., Attygalle, D., & Amarasinghe, D. A. S. (2023). Harnessing the capabilities of microorganisms for the valorisation of coal Fly ash waste through biometallurgy. Minerals, 13(6), 724.

    Article  CAS  Google Scholar 

  • Kasinath, A., Fudala-Ksiazek, S., Szopinska, M., Bylinski, H., Artichowicz, W., Remiszewska-Skwarek, A., & Luczkiewicz, A. (2021). Biomass in biogas production: Pre-treatment and codigestion. Renewable and Sustainable Energy Reviews, 150, 111509.

    Article  CAS  Google Scholar 

  • Kesari, K. K., Soni, R., Jamal, Q. M. S., et al. (2021). Wastewater treatment and reuse: A review of its applications and health implications. Water, Air, and Soil Pollution, 232, 208.

    Article  CAS  Google Scholar 

  • Khaliq, S. J. A., Ahmed, M., Al-Wardy, M., Al-Busaidi, A., & Choudri, B. S. (2017). Wastewater and sludge management and research in Oman: An overview. Journal of the Air & Waste Management Association, 67(3), 267–278.

    Article  Google Scholar 

  • Kim, D., & Phae, C. (2022). Analysis of the effect of sludge reduction and energy production from introducing anaerobic digest plant into a sewage treatment plant. Water, 14(11), 1821. https://doi.org/10.3390/w14111821

    Article  CAS  Google Scholar 

  • Kirchmann, H., Börjesson, G., Kätterer, T., & Cohen, Y. (2017). From agricultural use of sewage sludge to nutrient extraction: A soil science outlook. Ambio, 46(2), 143–154.

    Article  CAS  Google Scholar 

  • Kocbek, E., Garcia, H. A., Hooijmans, C. M., Mijatović, I., Kržišnik, D., Humar, M., & Brdjanovic, D. (2022). Effects of the sludge’s physical-chemical properties on its microwave drying performance. Science of the Total Environment, 828, 154142.

    Article  CAS  Google Scholar 

  • Kokina, K., Mezule, L., Gruskevica, K., Neilands, R., Golovko, K., & Juhna, T. (2022). Impact of rapid pH changes on activated sludge process. Applied Sciences, 12(11), 5754.

    Article  CAS  Google Scholar 

  • Koul, B., Yadav, D., Singh, S., Kumar, M., & Song, M. (2022). Insights into the domestic wastewater treatment (DWWT) regimes: A review. Water, 14, 3542.

    Article  CAS  Google Scholar 

  • Kumar, V., & Chandra, R. (2020). Metagenomics analysis of rhizospheric bacterial communities of Saccharum arundinaceum growing on organometallic sludge of sugarcane molasses-based distillery. 3 Biotech, 10(7), 316. https://doi.org/10.1007/s13205-020-02310-5

    Article  Google Scholar 

  • Kumar, V., & Thakur, I. S. (2020). Extraction of lipids and production of biodiesel from secondary tannery sludge by in situ transesterification. Bioresource Technology Reports, 11, 100446. https://doi.org/10.1016/j.biteb.2020.100446

    Article  Google Scholar 

  • Kumar, V., Chopra, A. K., & Kumar, A. (2017). A review on sewage sludge (biosolids), a resource for sustainable agriculture. Archives of Agriculture and Environmental Science, 2(4), 340–347.

    Article  Google Scholar 

  • Kumar, V., Srivastava, S., & Thakur, I. S. (2021a). Enhanced recovery of polyhydroxyalkanoates from secondary wastewater sludge of sewage treatment plant: Analysis and process parameters optimization. Bioresource Technology Reports, 15, 100783. https://doi.org/10.1016/j.biteb.2021.100783

    Article  CAS  Google Scholar 

  • Kumar, V., Ferreira, L. F. R., Sonkar, M., & Singh, J. (2021b). Phytoextraction of heavy metals and ultrastructural changes of Ricinus communis L. grown on complex organometallic sludge discharged from alcohol distillery. Environmental Technology & Innovation, 22, 101382. https://doi.org/10.1016/j.eti.2021.101382

    Article  CAS  Google Scholar 

  • Kumar, M., Seth, A., Singh, A. K., Rajput, M. S., & Sikandar, M. (2021c). Remediation strategies for heavy metals contaminated ecosystem: A review. Environmental and Sustainability Indicators, 12, 100155.

    Article  Google Scholar 

  • Kumar, S., Thakur, N., Singh, A. K., Gudade, B. A., Ghimire, D., & Das, S. (2022). Microbes-assisted phytoremediation of contaminated environment: Global status, progress, challenges, and future prospects. In V. Kumar, M. P. Shah, & S. K. Shahi (Eds.), Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (pp. 555–570). Elsevier.

    Chapter  Google Scholar 

  • Kwarciak-Kozłowska, A., & Gałwa-Widera, M. (2023). Chapter 11 – Biofiltration as an ecological method of removing sewage sludge odours by solar drying. In M. N. V. Prasad & M. Smol (Eds.), Sustainable and circular management of resources and waste towards a green deal (pp. 151–161). Elsevier.

    Chapter  Google Scholar 

  • Lee, D. (2019). Implementation of collaborative activities for sustainable supply chain innovation: An analysis of the firm size effect. Sustainability, 11(11), 3026.

    Article  Google Scholar 

  • Lee, D., Fu, Y., Zhou, D., Nie, T., & Song, Z. (2022). Is there a missing link? Exploring the effects of institutional pressures on environmental performance in the Chinese construction industry. International Journal of Environmental Research and Public Health, 19(18), 11787.

    Article  Google Scholar 

  • Liang, Y., Wang, R., Sun, W., & Sun, Y. (2023). Advances in chemical conditioning of residual activated sludge in China. Water, 15(2), 345. https://doi.org/10.3390/w15020345

    Article  CAS  Google Scholar 

  • Liew, C. S., Yunus, N. M., Chidi, B. S., Lam, M. K., Goh, P. S., Mohamad, M., Sin, J. C., Lam, S. M., Lim, J. W., & Lam, S. S. (2022). A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting. Journal of Hazardous Materials, 423(Part A), 126995.

    Article  CAS  Google Scholar 

  • Mangone, F., Ferreira, J., Ferrari, A., & Gutiérrez, S. (2018). Modelling and optimisation of a geotextile dewatering tube process. In A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, & T. Wallek (Eds.), Computer aided chemical engineering (Vol. 43, pp. 1371–1376). Elsevier.

    Google Scholar 

  • Mishra, R. R., & Sharma, A. K. (2016). Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 81, 78–97.

    Article  CAS  Google Scholar 

  • Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University – Science, 34(3), 101865.

    Article  Google Scholar 

  • Mong, G. R., Chong, W. W. F., Nor, S. A. M., Ng, J. H., Chong, C. T., Idris, R., Too, J., Chiong, M. C., & Abas, M. A. (2021). Pyrolysis of waste activated sludge from food manufacturing industry: Thermal degradation, kinetics and thermodynamics analysis. Energy, 235, 121264.

    Article  Google Scholar 

  • Morello, R., Di Capua, F., Esposito, G., Pirozzi, F., Fratino, U., & Spasiano, D. (2022). Sludge minimisation in mainstream wastewater treatment: Mechanisms, strategies, technologies, and current development. Journal of Environmental Management, 319, 115756.

    Article  CAS  Google Scholar 

  • Morseletto, P. (2020). Targets for a circular economy. Resources, Conservation and Recycling, 153, 104553.

    Article  Google Scholar 

  • Nagy, E. (2019). Chapter 17 – Forward osmosis. In E. Nagy (Ed.), Basic equations of mass transport through a membrane layer (2nd ed., pp. 447–456). Elsevier.

    Google Scholar 

  • Nazari, L., Sarathy, S., Santoro, D., Ho, D., Ray, M. B., & Xu, C. (2018). Recent advances in energy recovery from wastewater sludge. In L. Rosendahl (Ed.), Direct thermochemical liquefaction for energy applications (pp. 67–100). Woodhead Publishing.

    Chapter  Google Scholar 

  • Nazir, R., & Khalid, S. (2022). Chapter 6 – Carbonaceous materials-a prospective strategy for eco-friendly decontamination of wastewater. In I. Anastopoulos, E. Lima, L. Meili, & D. Giannakoudakis (Eds.), Biomass-derived materials for environmental applications (pp. 135–168). Elsevier.

    Chapter  Google Scholar 

  • Nielsen, S. (2008). Environmental impact of sludge treatment and recycling in reed bed systems. In S. E. Jørgensen & B. D. Fath (Eds.), Encyclopedia of ecology (pp. 1339–1342). Academic.

    Chapter  Google Scholar 

  • Nielsen, R. V., Jensen, M., Duus, S. A. C., & Christensen, M. L. (2019). Critical moisture point of sludge and its link to vapour sorption and dewatering. Chemosphere, 236, 124299.

    Article  CAS  Google Scholar 

  • Obaideen, K., Shehata, N., Sayed, E. T., Abdelkareem, M. A., Mahmoud, M. S., & Olabi, A. G. (2022). The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guidelines. Energy Nexus, 7, 100112.

    Article  Google Scholar 

  • Okoye, C. O., Addey, C. I., Oderinde, O., Okoro, J. O., Uwamungu, J. Y., Ikechukwu, C. K., Okeke, E. S., Ejeromedoghene, O., & Odii, E. C. (2022). Toxic chemicals and persistent organic pollutants associated with micro- and Nanoplastics pollution. Chemical Engineering Journal Advances, 11, 100310.

    Article  CAS  Google Scholar 

  • Padmanabhan, K. K., & Barik, D. (2019). Health hazards of medical waste and its disposal. In Energy from toxic organic waste for heat and power generation (pp. 99–118).

    Google Scholar 

  • Petrovič, A., Stergar, J., Škodič, L., Rašl, N., Predikaka, T. C., Čuček, L., Goričanec, D., & Urbancl, D. (2023). Thermo-kinetic analysis of pyrolysis of thermally pre-treated sewage sludge from the food industry. Thermal Science and Engineering Progress, 42, 101863. https://doi.org/10.1016/j.tsep.2023.101863

  • Philipp, W., & Hoelzle, L. E. (2014). Manure/Waste Management | Waste Management in Europe. In M. Dikeman & C. Devine (Eds.), Encyclopedia of meat sciences (2nd ed., pp. 157–163). Academic.

    Chapter  Google Scholar 

  • Prateep Na Talang, R., Sirivithayapakorn, S., & Polruang, S. (2022). Life cycle impact assessment and life cycle cost assessment for centralised and decentralised wastewater treatment plants in Thailand. Scientific Reports, 12(1), 14540.

    Article  CAS  Google Scholar 

  • Raheem, A., Sikarwar, V. S., He, J., Dastyar, W., Dionysiou, D. D., Wang, W., & Zhao, M. (2018). Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chemical Engineering Journal, 337, 616–641.

    Article  CAS  Google Scholar 

  • Rahman, T. U., Roy, H., Islam, M. R., Tahmid, M., Fariha, A., Mazumder, A., Tasnim, N., Pervez, M. N., Cai, Y., Naddeo, V., et al. (2023). The advancement in membrane bioreactor (MBR) technology toward sustainable industrial wastewater management. Membranes, 13(2), 181.

    Article  CAS  Google Scholar 

  • Rakotonimaro, T. V., Neculita, C. M., Bussière, B., et al. (2017). Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: A review. Environmental Science and Pollution Research, 24, 73–91.

    Article  CAS  Google Scholar 

  • Rani, R. U., Kumar, S. A., Kaliappan, S., Yeom, I. T., & Banu, J. R. (2014). Enhancing the anaerobic digestion potential of dairy waste-activated sludge by two-step sono-alkalization pre-treatment. Ultrasonics Sonochemistry, 21(3), 1065–1074.

    Article  Google Scholar 

  • Rorat, A., Courtois, P., Vandenbulcke, F., & Lemiere, S. (2019). Sanitary and environmental aspects of sewage sludge management. In M. N. V. Prasad, P. J. C. de Favas, M. Vithanage, & S. V. Mohan (Eds.), Industrial and municipal sludge (pp. 155–180). Butterworth-Heinemann.

    Google Scholar 

  • Rosiek, K. (2020). Directions and challenges in the Management of Municipal Sewage Sludge in Poland in the context of the circular economy. Sustainability, 12(9), 3686.

    Article  CAS  Google Scholar 

  • Roy, M., & Saha, R. (2021). Dyes and their removal technologies from wastewater: A critical review. In S. Bhattacharyya, N. K. Mondal, J. Platos, V. Snášel, & P. Krömer (Eds.), Intelligent environmental data monitoring for pollution management, intelligent data-centric systems (pp. 127–160). Academic Press.

    Google Scholar 

  • Saharia, M., Dey, G., & Kumar, V. (2024). Vermiremediation of plant agro waste to recover residual nutrients and improve crop productivity. In Earthworm technology in organic waste management: Recent trends and advances (pp. 79–113). Elsevier.

    Chapter  Google Scholar 

  • Sangamnere, R., Misra, T., Bherwani, H., et al. (2023). A critical review of conventional and emerging wastewater treatment technologies. Sustainable Water Resources Management, 9, 58. https://doi.org/10.1007/s40899-023-00829-y

    Article  Google Scholar 

  • Saravanan, A., Kumar, P. S., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P. R., & Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595.

    Article  CAS  Google Scholar 

  • Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., & Yoga Latha, L. (2011). Extraction, isolation and characterisation of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary, and Alternative Medicines, 8(1), 1–10. https://doi.org/10.4314/ajtcam.v8i1.64795

    Article  CAS  Google Scholar 

  • Sathya, K., Nagarajan, K., Carlin Geor Malar, G., et al. (2022). A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Applied Water Science, 12, 70. https://doi.org/10.1007/s13201-022-01594-7

    Article  CAS  Google Scholar 

  • Schellenberg, T., Subramanian, V., Ganeshan, G., Tompkins, D., & Pradeep, R. (2020). Wastewater discharge standards in the evolving context of Urban sustainability – The case of India. Frontiers in Environmental Science, 8, 30.

    Article  Google Scholar 

  • Seleiman, M. F., Santanen, A., & Mäkelä, P. S. A. (2020). Recycling sludge on cropland as fertiliser – Advantages and risks. Resources, Conservation and Recycling, 155, 104647.

    Article  Google Scholar 

  • Sha, L., Wu, Z., Ling, Z., Liu, X., Yu, X., & Zhang, S. (2021). Dewaterability and energy consumption of electro-dewatered sludge near the anode and the cathode during the electro-dewatering process. Journal of Environmental Chemical Engineering, 9(4), 105729.

    Article  CAS  Google Scholar 

  • Shabir, I., Dash, K. K., Dar, A. H., Pandey, V. K., Fayaz, U., Srivastava, S., & Nisha, R. (2023). Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods, 7, 100215.

    Article  CAS  Google Scholar 

  • Shaddel, S., Bakhtiary-Davijany, H., Kabbe, C., Dadgar, F., & Østerhus, S. W. (2019). Sustainable sewage sludge management: From current practices to emerging nutrient recovery technologies. Sustainability, 11(12), 3435.

    Article  CAS  Google Scholar 

  • Shameem, K. S., & Sabumon, P. C. (2023). A review of the stability, sustainability, storage and rejuvenation of aerobic granular sludge for wastewater treatment. Water, 15(5), 950. https://doi.org/10.3390/w15050950

    Article  CAS  Google Scholar 

  • Shankar, R., Kumar, S., Prasad, A. K., Khare, P., Varma, A. K., & Yadav, V. K. (2021). Chapter 9 – Biological wastewater treatment plants (WWTPs) for industrial wastewater. In M. Shah & S. Rodriguez-Couto (Eds.), Microbial ecology of wastewater treatment plants (pp. 193–216). Elsevier.

    Chapter  Google Scholar 

  • Sharma, K., & Garg, V. K. (2019). Chapter 10 – Vermicomposting of waste: A zero-waste approach for waste management. In M. J. Taherzadeh, K. Bolton, J. Wong, & A. Pandey (Eds.), Sustainable resource recovery and zero waste approaches (pp. 133–164). Elsevier.

    Google Scholar 

  • Shi, F., Pan, J., Zhou, L., Liao, M., & Chen, K. (2023). Research on residual sludge disposal and resource utilization technology of urban sewage treatment plant. Environment, Resource and Ecology Journal, 7, 31–35. https://doi.org/10.23977/erej.2023.070206

    Article  Google Scholar 

  • Shojaei, S., & Shojaei, S. (2021). Chapter 23 – Optimisation of process conditions in wastewater degradation process. In R. R. Karri, G. Ravindran, & M. H. Dehghani (Eds.), Soft computing techniques in solid waste and wastewater management (pp. 381–392). Elsevier.

    Chapter  Google Scholar 

  • Shukla, A., Patwa, A., Parde, D., & Vijay, R. (2023). A review on generation, characterization, containment, transport, and treatment of fecal sludge and septage with resource recovery-oriented sanitation. Environmental Research, 216(Part 1), 114389. https://doi.org/10.1016/j.envres.2022.114389

    Article  CAS  Google Scholar 

  • Shumbula, P., Maswanganyi, C., & Shumbula, N. (2022). Type, sources, methods and treatment of organic pollutants in wastewater. In Environmental sciences. IntechOpen. https://doi.org/10.5772/intechopen.101347

    Chapter  Google Scholar 

  • Singh, R., Andaluri, G., & Pandey, V. C. (2022a). Chapter 1 – Cities’ water pollution – Challenges and controls. In V. C. Pandey (Ed.), Algae and aquatic Macrophytes in cities (pp. 3–22). Elsevier.

    Chapter  Google Scholar 

  • Singh, S., Ghorai, M. K., & Kar, K. K. (2022b). Extraction of unburned carbon from coal fly ash. In K. K. Kar (Ed.), Handbook of Fly ash (pp. 403–449). Butterworth-Heinemann.

    Chapter  Google Scholar 

  • Singh, S., Yadav, R., & Singh, A. N. (2023). Chapter 27 – Applications of waste-to-economy practices in the urban wastewater sector: Implications for ecosystem, human health and environment. In P. Singh, P. Verma, R. Singh, A. Ahamad, & A. C. S. Batalhão (Eds.), Waste management and resource recycling in the develo** world (pp. 625–646). Elsevier.

    Chapter  Google Scholar 

  • Soni, R., Devi, S. (2022). Chapter 12 – Composting process: Fundamental and molecular aspects. In J. Samuel, A. Kumar, J. Singh (Eds.), Relationship between microbes and the environment for sustainable ecosystem services, Volume 1 (pp. 239–265). Elsevier.

    Google Scholar 

  • Stewart, B. A. (2017). Chapter 3 – Soil health concerns facing dryland agroecosystems. In M. M. Al-Kaisi & B. Lowery (Eds.), Soil health and intensification of agroecosystems (pp. 51–77). Academic.

    Chapter  Google Scholar 

  • Su, M., Kong, L., Liao, C., Chen, D., & Shih, K. (2019). Stabilisation of cadmium in industrial sludge – Generation of crystalline products. In M. N. V. Prasad, P. J. de Campos Favas, M. Vithanage, & S. V. Mohan (Eds.), Industrial and municipal sludge (pp. 503–524). Butterworth-Heinemann.

    Google Scholar 

  • Sude, G., Rajpal, A., Tyagi, V. K., et al. (2023). Evaluation of sludge quality in Indian sewage treatment plants to develop quality control indices. Environmental Science and Pollution Research. Advanced online publication, 31, 17578.

    Article  Google Scholar 

  • Sugurbekova, G., Nagyzbekkyzy, E., Sarsenova, A., Danlybayeva, G., Anuarbekova, S., Kudaibergenova, R., Frochot, C., Acherar, S., Zhatkanbayev, Y., & Moldagulova, N. (2023). Sewage sludge management and application in the form of sustainable fertilizer. Sustainability, 15, 6112.

    Article  CAS  Google Scholar 

  • Thomas, O., & Thomas, M.-F. (2022). Chapter 12 – Industrial wastewater. In O. Thomas & C. Burgess (Eds.), UV-visible spectrophotometry of waters and soils (3rd ed., pp. 385–416). Elsevier.

    Chapter  Google Scholar 

  • Turner, T., Wheeler, R., & Oliver, I. W. (2022). Evaluating land application of pulp and paper mill sludge: A review. Journal of Environmental Management, 317, 115439. https://doi.org/10.1016/j.jenvman.2022.115439

    Article  CAS  Google Scholar 

  • Tyagi, V. K., & Lo, S.-L. (2013). Sludge: A waste or renewable source for energy and resource recovery? Renewable and Sustainable Energy Reviews, 25, 708–728.

    Article  CAS  Google Scholar 

  • Tyagi, V. K., & Lo, S.-L. (2016). Chapter 10 – Energy and resource recovery from sludge: Full-scale experiences. In M. N. V. Prasad & K. Shih (Eds.), Environmental materials and waste (pp. 221–244). Academic.

    Google Scholar 

  • Udayanga, W. D. C., Veksha, A., Giannis, A., Lisak, G., & Lim, T.-T. (2019). Effects of sewage sludge organic and inorganic constituents on the properties of pyrolysis products. Energy Conversion and Management, 196, 1410–1419.

    Article  Google Scholar 

  • Urban, R. C., & Isaac, R. D. L. (2018). WTP and WWTP sludge management: A case study in the metropolitan area of Campinas, southeastern Brazil. Environmental Monitoring and Assessment, 190, 584.

    Article  Google Scholar 

  • USEPA. (n.d.). Land application of biosolids. Retrieved from https://www.epa.gov/biosolids/land-application-biosolids. Accessed 9 July 2023.

  • Valenca, R., Borthakur, A., Le, H., & Mohanty, S. K. (2021). Chapter 7 – Biochar’s role in improving the pathogens removal capacity of stormwater biofilters. In A. K. Sarmah (Ed.), Advances in chemical pollution, environmental management and protection (Vol. 7, pp. 175–201). Elsevier.

    Google Scholar 

  • Vilakazi, S., Onyari, E., Nkwonta, O., & Bwapwa, J. K. (2023). Reuse of domestic sewage sludge to achieve a zero waste strategy & improve concrete strength & durability – A review. South African Journal of Chemical Engineering, 43, 122–127. https://doi.org/10.1016/j.sajce.2022.10.012

    Article  Google Scholar 

  • Vrasna, D. K., Goh, P. S., Lau, W. J., Ismail, A. F., Matsuyama, H., & Gonzales, R. R. (2022). Microalgae dewatering using forward osmosis membrane: A review. Materials Today: Proceedings, 65(Part 7), 3073–3080.

    CAS  Google Scholar 

  • Wang, X., Wang, L., & Chen, J. (2022). Chapter 16 – Stabilisation/solidification of metallurgical solid wastes. In D. C. W. Tsang & L. Wang (Eds.), Low carbon stabilization and solidification of hazardous wastes (pp. 243–257). Elsevier.

    Chapter  Google Scholar 

  • Ward, B. J., Andriessen, N., Tembo, J. M., Kabika, J., Grau, M., Scheidegger, A., Morgenroth, E., & Strande, L. (2021). Predictive models using “cheap and easy” field measurements: Can they fill a gap in planning, monitoring, and implementing faecal sludge management solutions? Water Research, 196, 116997.

    Article  CAS  Google Scholar 

  • Water Technologies and Solutions. (n.d.). Wastewater odor control. Available at: https://www.watertechnologies.com/products/wastewater-treatments/odor-control-chemicals. Accessed 9 July 2023.

  • Wei, Y., Zhou, X., Zhou, L., Liu, C., & Liu, J. (2020). Electro-dewatering of sewage sludge: Effect of near-anode sludge modification with different dosages of calcium oxide. Environmental Research, 186, 109487.

    Article  CAS  Google Scholar 

  • Wiśniowska, E., Grobelak, A., Kokot, P., & Kacprzak, M. (2019). Chapter10 – Sludge legislation-comparison between different countries. In M. N. V. Prasad, P. J. de Campos Favas, M. Vithanage, & S. V. Mohan (Eds.), Industrial and municipal sludge (pp. 201–224). Butterworth-Heinemann.

    Google Scholar 

  • Wu, B., Dai, X., & Chai, X. (2020). Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilisations. Water Research, 180, 115912.

    Article  CAS  Google Scholar 

  • Wysocka, I. (2023). Absorption processes in reducing the odour nuisance of wastewater. MethodsX, 10, 101996.

    Article  CAS  Google Scholar 

  • **e, Y., Chen, Y., Lian, Q., Yin, H., Peng, J., Sheng, M., & Wang, Y. (2022). Enhancing real-time prediction of effluent water quality of wastewater treatment plant based on improved feedforward neural network coupled with optimisation algorithm. Water, 14(7), 1053.

    Article  CAS  Google Scholar 

  • Yang, Y., Wang, L., **ang, F., Zhao, L., & Qiao, Z. (2020). Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones. International Journal of Environmental Research and Public Health, 17(2), 436.

    Article  CAS  Google Scholar 

  • Yang, M., Chen, L., Wang, J., et al. (2023). Circular economy strategies for combating climate change and other environmental issues. Environmental Chemistry Letters, 21, 55–80.

    Article  CAS  Google Scholar 

  • Yoganandham, S. T., Sathyamoorthy, G., & Renuka, R. R. (2020). Chapter 8 – Emerging extraction techniques: Hydrothermal processing. In M. D. Torres, S. Kraan, & H. Dominguez (Eds.), Advances in green and sustainable chemistry: Sustainable seaweed technologies (pp. 191–205). Elsevier.

    Chapter  Google Scholar 

  • Yu, L., Zhang, Y., Zhang, Z., Mao, H., Han, H., & Yang, J. (2023). Recycling reuse of municipal sewage sludge in sustainable structural materials: Preparation, properties, crystallization, and microstructure analyses. Construction and Building Materials, 398, 132507.

    Article  CAS  Google Scholar 

  • Yue, L., Cheng, J., Tang, S., An, X., Hua, J., Dong, H., & Zhou, J. (2021). Ultrasound and microwave pre-treatments promote methane production potential and energy conversion during the anaerobic digestion of lipid and food wastes. Energy, 228, 120525.

    Article  CAS  Google Scholar 

  • Zarei, M. (2020). Wastewater resources management for energy recovery from a circular economy perspective. Water-Energy Nexus, 3, 170–185.

    Article  Google Scholar 

  • Zhang, Y., Lian, G., Dong, C., Cai, M., Song, Z., Shi, Y., Wu, L., **, M., & Wei, Z. (2020). Optimising and understanding the pressurised vertical electro-osmotic dewatering of activated sludge. Process Safety and Environmental Protection, 140, 392–402.

    Article  CAS  Google Scholar 

  • Zhao, X., Yang, J., Tu, C., Zhou, Z., Wu, W., Chen, G., Yao, J., Ruan, D., & Qiu, Z. (2019). A full-scale survey of sludge landfill: Sludge properties, leachate characteristics and microbial community structure. Water Science and Technology, 80(6), 1185–1195.

    Article  CAS  Google Scholar 

  • Zhao, P., Du, Z., Fu, Q., Ai, J., Hu, A., Wang, D., & Zhang, W. (2023). Molecular composition and chemodiversity of dissolved organic matter in wastewater sludge via Fourier transform ion cyclotron resonance mass spectrometry: Effects of extraction methods and electrospray ionisation modes. Water Research, 232, 119687.

    Article  CAS  Google Scholar 

  • Zhou, H., Wei, L., Wang, D., & Zhang, W. (2022). Environmental impacts and optimising strategies of municipal sludge treatment and disposal routes in China based on life cycle analysis. Environment International, 166, 107378.

    Article  CAS  Google Scholar 

  • Zhu, X., Xu, Y., Zhen, G., Lu, X., Xu, S., Zhang, J., Gu, L., Wen, H., Liu, H., Zhang, X., & Wu, Z. (2023). Effective multipurpose sewage sludge and food waste reduction strategies: A focus on recent advances and future perspectives. Chemosphere, 311, 136670.

    Google Scholar 

Download references

Declaration of Generative AI and AI-Assisted Technologies in the Writing Process

While preparing this work, the author(s) used GPT 3.5/Open AI to improve sentence structure and grammar. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the publication’s content.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eqan, M., Wan, J., Yan, Y. (2024). Fundamentals of Industrial Sludge: Trends and Challenges. In: Kumar, V., Bhat, S.A., Verma, P., Kumar, S. (eds) Recent Trends in Management and Utilization of Industrial Sludge. Springer, Cham. https://doi.org/10.1007/978-3-031-58456-5_1

Download citation

Publish with us

Policies and ethics

Navigation