Demand Forecasting

  • Chapter
  • First Online:
Hydrometeorology
  • 21 Accesses

Abstract

Estimates for water abstractions are often required in drought and water resources forecasting applications. In some cases, the raw or treated water is returned to the river system, whilst consumptive use represents a more permanent loss. Water demands are typically estimated by aggregating the water demands of individual users such as households, factories and irrigation schemes or using regression relationships, econometric approaches and artificial neural network techniques. This chapter presents an introduction to these topics with examples in the areas of municipal water supply, irrigation and hydropower generation. The topics discussed include micro-component and per capita approaches, crop simulation models, and optimisation of hydropower operations. The develo** area of Global Hydrological Models (GHMs) is also considered and their role in estimating water use in climate change impact assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeshu G, Tian F, Wild T, Zhao M, Turner S, Chowdhury A, Vernon C, Hu H, Zhuang Y, Hejazi M, Li H (2023) Enhancing the representation of water management in global hydrological models. Geosci Model Dev 16:5449–5472

    Google Scholar 

  • Agthe DE, Billings RB, Buras N (2003) Managing urban water supply. Springer, Dordrecht

    Book  Google Scholar 

  • Arbués F, García-Valiñas MA, Martínez-Espiñeirac R (2003) Estimation of residential water demand: a state-of-the-art review. J Socio Eco 32(1):81–102

    Article  Google Scholar 

  • Arsenault R, Côté P (2024) Analysis of the effects of biases in ensemble streamflow prediction (ESP) forecasts on electricity production in hydropower reservoir management. Hydrol Earth Syst Sci 23:2735–2750

    Google Scholar 

  • Bernardes J, Santos M, Abreu T, Prado L, Miranda D, Julio R, Viana P, Fonseca M, Bortoni E, Bastos G (2022) Hydropower operation optimization using machine learning: a systematic review. AI 3:78–99

    Google Scholar 

  • Boucher MA, Ramos M-H (2019) Ensemble streamflow forecasts for hydropower systems. In: Duan Q, Pappenberger F, Wood A, Cloke HL, Schaake J (eds) Handbook of hydrometeorological ensemble forecasting. Springer-Verlag, Berlin

    Google Scholar 

  • Boucher M-A, Tremblay D, Delorme L, Perreault L, Anctil F (2012) Hydro-economic assessment of hydrological forecasting systems. J Hydrol 416–417:133–144

    Article  Google Scholar 

  • Butler D, Memon FA (2006) Water demand management. IWA Publishing, London

    Google Scholar 

  • Challinor AJ, Slingo JM, Wheeler TR, Craufurd PQ, Grimes DIF (2003) Toward a combined seasonal weather and crop productivity forecasting system: determination of the working spatial scale. J Appl Meteorol 42(2):175–192

    Google Scholar 

  • Clarke R (1998) CROPWAT for windows user guide. FAO, Rome

    Google Scholar 

  • Corson-Dosch H, Nell C, Volentine R, Archer AA, Bechtel E, Bruce JL, Felts N, Gross TA, Lopez-Trujillo D, Riggs CE, Read EK (2022) The water cycle. US Geological Survey

    Google Scholar 

  • Dieter CA, Maupin MA, Caldwell RR, Harris MA, Ivahnenko TI, Lovelace JK, Barber NL, Linsey KS (2018) Estimated use of water in the United States in 2015. USGS circular 1441

    Google Scholar 

  • Donkor EA, Mazzuchi TA, Soyer R, Roberson JA (2012) Urban water demand forecasting: review of methods and models. J Water Resour Plan Manag 140(2):146–159

    Article  Google Scholar 

  • Environment Agency (2008) Water resources in England and Wales—current state and future pressures. Environment Agency, Bristol

    Google Scholar 

  • FAO (1992a) Scheme irrigation water needs and supply. Irrigation Water Management Training Manual No. 6. By Brouwer C, Hoevenaars JPM, van Boasch BE, Hatcho N, Heibloem M, Rome, Italy

    Google Scholar 

  • FAO (1992b) CROPWAT—a computer program for irrigation planning and management. FAO

    Google Scholar 

  • FAO (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage paper No. 56, by Allen R G, Pereira L S, Raes D, Smith M, Rome, Italy

    Google Scholar 

  • FAO (2002) Irrigation manual: planning, development monitoring and evaluation of irrigated agriculture with farmer participation. Developed by Savva AP, Frenken K. Food and Agriculture Organization of the United Nations (FAO) Sub-Regional Office for East and Southern Africa (SAFR), Harare

    Google Scholar 

  • Gavasso-Rita Y, Papalexiou S, Li Y, Elshorbagy A, Li Z, Schuster-Wallace C (2024) Crop models and their use in assessing crop production and food security: a review. Food Energy Secur 13:e503

    Google Scholar 

  • Hamlet AF, Huppert D, Lettenmaier DP (2002) Economic value of long-lead streamflow forecasts for Columbia River hydropower. J Water Resour Plan Manag 128:91–101

    Article  Google Scholar 

  • Hansen JW, Challinor A, Ines A, Wheeler T, Moron V (2006) Translating climate forecasts into agricultural terms: advances and challenges. Clim Res 33:27–41

    Article  Google Scholar 

  • Hoch J, Sutanudjaja E, Wanders N, van Beek R, Bierkens M (2023) Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1km over the European continent. Hydrol Earth Syst Sci 27:1383–1401

    Google Scholar 

  • Horn MA, Moore RB, Hayes L, Flanagan SM (2008) Methods for and estimates of 2003 and projected water use in the Seacoast region, southeastern New Hampshire. US Geological Survey Scientific Investigations Report 2007–5157

    Google Scholar 

  • Hutson SS, Barber NL, Kenny JF, Linsey KS, Lumia DS, Maupin MA (2004) Estimated use of water in the United States in 2000: Reston, Va, US Geological Survey Circular 1268

    Google Scholar 

  • International Hydropower Association (2003) The role of hydropower in sustainable development. IHA White Paper, February 2003, UK

    Google Scholar 

  • Jury MR (2013) Climate prediction experiences in southern Africa 1990–2005 and key outcomes. Nat Hazards 65:1883–1894

    Article  Google Scholar 

  • Kumar A, Gosling SN, Johnson MF, Jones MD, Zaherpour J, Kumar R, Leng G, Schmied HM, Kupzig J, Breuer L, Hanasaki N, Tang Q, Ostberg S, Stacke T, Pokhrel Y, Wada Y, Masaki Y (2022) Multi-model evaluation of catchment- and global-scale hydrological model simulations of drought characteristics across eight large river catchments. Adv Water Resour 165:104212

    Article  Google Scholar 

  • Kupzig J, Reinecke R, Pianosi F, Flörke M, Wagener T (2024) Towards parameter estimation in global hydrological models. Environ Res Lett 18:074023

    Google Scholar 

  • Lopez-Jimenez J, Vande Wouwer A, Quijano N (2022) Dynamic modeling of crop–soil systems to design monitoring and automatic irrigation processes: a review with worked examples. Water 14:889

    Google Scholar 

  • Mazer A (2007) Electric power planning for regulated and deregulated markets. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  • McCollor D, Stull R (2008) Hydrometeorological short-range ensemble forecasts in complex terrain. Part II: economic evaluation. Weather Forecast 23(4):557–574

    Article  Google Scholar 

  • McMahon TA (1993) Chapter 27: Hydrologic design for water use. In: Maidment DR (ed) Handbook of hydrology. McGraw Hill

    Google Scholar 

  • National Academy of Sciences (2002) Estimating water use in the United States: a new paradigm for the National Water-Use Information Program. National Academy Press, Washington, USA

    Google Scholar 

  • Parker JM, Wilby RL (2013) Quantifying household water demand: a review of theory and practice in the UK. Water Resour Manag 27(4):981–1011

    Article  Google Scholar 

  • Pritchard G, Philpott AB, Neame PJ (2005) Hydroelectric reservoir optimization in a pool market. Math Prog A 103:445–461

    Article  Google Scholar 

  • Rinaudo JD (2015) Long-term water demand forecasting. In: Grafton Q, Daniell K, Nauges C, Rinaudo JD, Chan N (eds) Understanding and managing urban water in transition. Global issues in water policy, vol 15. Springer, Dordrecht

    Google Scholar 

  • Santos T, Diniz A, Saboia C, Cabral R, Cerqueira L (2020) Hourly pricing and day-ahead dispatch setting in Brazil: the dessem model. Electr Power Syst Res 189:106709

    Google Scholar 

  • Schmied H, Cáceres D, Eisner S, Flörke M, Herbert C, Niemann C, Peiris T, Popat E, Portmann F, Reinecke R, Schumacher M, Shadkam S, Telteu C-E, Trautmann T, Döll P (2021) The global water resources and use model WaterGAP v2.2d: model description and evaluation. Geosci Model Dev 14:1037–1079 (and corrigendum)

    Google Scholar 

  • Shuttleworth WJ (2007) Putting the ‘vap’ into evaporation. Hydrol Earth Syst Sci 11(1):210–244

    Article  Google Scholar 

  • Shuttleworth WJ (2012) Terrestrial hydrometeorology. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Sood A, Smakhtin V (2015) Global hydrological models: a review. Hydrol Sci J 60(4):549–565

    Article  CAS  Google Scholar 

  • Stone RC, Meinke H (2005) Operational seasonal forecasting of crop performance. Proc R Soc Lond B Biol Sci 360(1463):2109–2124

    Article  Google Scholar 

  • Telteu C-E, Schmied HM, Thiery W, Leng G, Burek P, Liu X, Boulange JES, Andersen LS, Grillakis M, Gosling SN, Satoh Y, Rakovec O, Stacke T, Chang J, Wanders N, Shah HL, Trautmann T, Mao G, Hanasaki N, Koutroulis A, Pokhrel Y, Samaniego L, Wada Y, Mishra V, Liu J, Döll P, Zhao F, Gädeke A, Rabin SS, Herz F (2021) Understanding each other’s models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geosci Model Dev 14:3843–3878

    Article  CAS  Google Scholar 

  • Thornley J, France J (2007) Mathematical models in agriculture, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Troccoli A, Harrison M, Anderson DLT, Mason SJ (2008) Seasonal climate: forecasting and managing risk, NATO science series IV: earth and environmental sciences, vol 82. Springer, Dordrecht

    Book  Google Scholar 

  • TVA (2009) Dams and hydro plants. Tennessee Valley Authority, USA

    Google Scholar 

  • Valmassoi A, Keller JD (2022) A review on irrigation parameterizations in Earth system models. Front Water 4:906664

    Google Scholar 

  • Veldkamp T, Zhao F, Ward P, de Moel H, Aerts J, Schmied H, Portmann F, Masaki Y, Pokhrel Y, Liu X, Satoh Y, Gerten D, Gosling S, Zaherpour J, Wada Y (2018) Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study. Environ Res Lett 13:055008

    Article  Google Scholar 

  • UKWIR (2016) WRMP19 Methods – Household Consumption Forecasting: Guidance Manual. UK Water Industry Research, Report Ref. No. 15/WR/02/9

    Google Scholar 

  • Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J (2014) The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. PNAS 111(9):3228–3232

    Article  CAS  Google Scholar 

  • WMO (2012a) Climate and meteorological information requirements for water management: a review of issues. WMO-No. 1094. WMO, Geneva

    Google Scholar 

  • WMO (2012b) Guide to Agricultural Meteorological Practices (GAMP) (2010 edition—updated in 2012). WMO-No.134. WMO, Geneva

    Google Scholar 

  • WMO (2013) Manual on the global observing system—volume 1: global aspects. WMO-No. 544. WMO, Geneva

    Google Scholar 

  • Wurbs RA (1994) Computer models for water-resources planning and management, IWR Report 94-NDS-7. US Army Corps of Engineers, Alexandria, Virginia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sene, K. (2024). Demand Forecasting. In: Hydrometeorology. Springer, Cham. https://doi.org/10.1007/978-3-031-58269-1_6

Download citation

Publish with us

Policies and ethics

Navigation