Solar Jets

  • Chapter
  • First Online:
Eruptions on the Sun

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 471))

  • 59 Accesses

Abstract

Various jet-like events observed in the solar atmosphere are described. They vary in size, lifetime, speed, temperature, and ranges of observed emissions. The most numerous and ubiquitous are spicules—thin elongated structures in the solar chromosphere. Surges are larger-scale ejections than spicules, but occur much less frequently. They are usually associated with small, changing satellite sunspots. Larger-scale X-ray jets are associated with subflares and are best observed inside polar coronal holes. This type of jets is also observed in extreme-ultraviolet emission lines. The longest jet-like phenomena are observed in white light using space-born coronagraphs. Modeling of jets is usually associated with magnetic configurations that include a null point, near which magnetic reconnection is possible and plasma flows can be redirected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, D., & Fletcher, L. (1999). High-resolution observations of plasma jets in the solar corona. Solar Physics, 190, 167–184.

    Article  ADS  Google Scholar 

  • Altschuler, M. D., Lilliequist, C. G., & Nakagawa, Y. (1968). A possible acceleration mechanism for a solar surge. Solar Physics, 5, 366–376.

    Article  ADS  Google Scholar 

  • Andreev, A. S. (1994). Numerical modeling of some mechanism for the formation of spicules and jets in the solar atmosphere. Astronomy Reports, 38, 768–776.

    ADS  Google Scholar 

  • Archontis, V., & Hood, A. W. (2013). A numerical model of standard to blowout jets. The Astrophysical Journal, 769, L21.

    Article  ADS  Google Scholar 

  • Auchere, F., Boulade, S., Koutchmy, S., Smartt, R. N., Delaboudinière, J. P., Georgakilas, A., Gurman, J. B., & Artzner, G. E. (1998). The prolate solar chromosphere. Astronomy and Astrophysics, 366, L57–L60.

    ADS  Google Scholar 

  • Beckers, J. M. (1968). High-resolution measurements of photosphere and sun-spot velocity and magnetic fields using a narrow-band birefringent filter. Solar Physics, 3, 258–268.

    Article  ADS  Google Scholar 

  • Beckers, J. M. (1972). Solar spicules. Annual Review of Astronomy and Astrophysics, 10, 73–100.

    Article  ADS  Google Scholar 

  • Bennett, S. M., & ErdĂ©lyi, R. (2015). On the statistics of macrospicules. The Astrophysical Journal, 808, 135.

    Article  ADS  Google Scholar 

  • Berghmans, D., Hochedez, J. F., Defise, J. M., Lecat, J. H., Nicula, B., Slemzin, V., Lawrence, G., Katsyiannis, A. C., van der Linden, R., Zhukov, A., Clette, F., Rochus, P., Mazy, E., Thibert, T., Nicolosi, P., Pelizzo, M.-G., & SchĂĽhle, U. (2006). SWAP onboard PROBA 2, a new EUV imager for solar monitoring. Advances in Space Research, 38, 1807–1811.

    Article  ADS  Google Scholar 

  • Bohlin, J. D., Vogel, S. N., Purcell, J. D., Sheeley, N. R., Jr., Tousey, R., & VanHoosier, M. E. (1975). A newly observed solar feature: Macrospicules in He II 304 Ă…. The Astrophysical Journal, 197, L133–L135.

    Article  ADS  Google Scholar 

  • Brueckner, G. E., & Bartoe, J.-D. F. (1983). Observations of high-energy jets in the corona above the quiet Sun, the heating of the corona, and the acceleration of the solar wind. The Astrophysical Journal, 272, 329–348.

    Article  ADS  Google Scholar 

  • Canfield, R. C., Reardon, K. P., Leka, K. D., Shibata, K., Yokoyama, T., & Shimojo, M. (1996). H alpha surges and X-ray jets in AR 7260. The Astrophysical Journal, 464, 1016–1029.

    Article  ADS  Google Scholar 

  • Chae, L., Qiu, J., Wang, H., & Goode, P. R. (1999). Extreme-ultraviolet jets and ha surges in solar microflares. The Astrophysical Journal, 513, L75–L78.

    Article  ADS  Google Scholar 

  • De Pontieu, B., ErdĂ©lyi, R., & Stewart, J. P. (2004). Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature, 430, 536–539.

    Article  ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S., Hansteen, V. H., Carlsson, M., Schrijver, C. J., Tarbell, T. D., Title, A. M., Shine, R. A., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Shimizu, T., & Nagata, S. (2007). A tale of two spicules: The impact of spicules on the magnetic chromosphere. Publications of the Astronomical Society of Japan, 59, S655–S662.

    Article  Google Scholar 

  • Filippov, B. P. (1993). Longitudinal motion of matter in the solar atmosphere due to magnetic compression. Astronomy Reports, 37, 547–550.

    ADS  Google Scholar 

  • Filippov, B. (1999a). Observation of a 3D magnetic null point in the solar corona. Solar Physics, 185, 297–309.

    Article  ADS  Google Scholar 

  • Filippov, B. P. (1999b). Zero points of the magnetic field in the solar atmosphere. Soviet Astronomy, 43, 549–555.

    Google Scholar 

  • Filippov, B., & Koutchmy, S. (2000). On the origin of the prolate solar chromosphere. Solar Physics, 196, 311–320.

    Article  ADS  Google Scholar 

  • Filippov, B., Gopalswamy, N., & Lozhechkin, A. V. (2001). Non-radial motion of eruptive filaments. Solar Physics, 203, 119–130.

    Article  ADS  Google Scholar 

  • Filippov, B., Koutchmy, S., & Vilinga, J. (2007). On the dynamic nature of the prolate solar chromosphere: Jet formation. Astronomy and Astrophysics, 464, 1119–1125.

    Article  ADS  Google Scholar 

  • Filippov, B., Golub, L., & Koutchmy, S. (2009). X-ray jet dynamics in a polar coronal hole region. Solar Physics, 254, 159–269.

    Article  Google Scholar 

  • Filippov, B., Koutchmy, S., & Tavabi, E. (2013). Formation of a white-light jet within a quadrupolar magnetic configuration. Solar Physics, 286, 143–156.

    Article  ADS  Google Scholar 

  • Filippov, B., Srivastava, A. K., Dwivedi, B. N., Masson, S., Aulanier, G., Joshi, N. C., & Uddin, W. (2015). Formation of a rotating jet during the filament eruption on 2013 April 10–11. Monthly Notices of the Royal Astronomical Society, 451, 5636–5648.

    Article  Google Scholar 

  • Forbes, T. G., & Priest, E. R. (1995). Photospheric magnetic field evolution and eruptive flares. The Astrophysical Journal, 446, 377–389.

    Article  ADS  Google Scholar 

  • Harvey, K. (2001). Coronal cavities. In P. Murdin (Ed.), Encyclopedia of astronomy and astrophysics. Institute of Physics Publishing.

    Google Scholar 

  • Gibson, S. (2015). Coronal cavities: Observations and implications for the magnetic environment of prominences. In J.-C. Vial & O. Engvold (Eds.), Solar Prominences (pp. 323–353). Springer.

    Chapter  Google Scholar 

  • Hollweg, J. V. (1982). On the origin of solar spicules. The Astrophysical Journal, 257, 345–353.

    Article  ADS  Google Scholar 

  • Innes, D. E., BuÄŤĂ­k, R., Guo, L. J., & Nitta, N. (2016). Observations of solar X-ray and EUV jets and their related phenomena. Astronomische Nachrichten, 337, 1024–1932.

    Article  ADS  Google Scholar 

  • Johannesson, A., & Zirin, H. (1996). The pole-equator variation of solar chromospheric height. The Astrophysical Journal, 471, 510–520.

    Article  ADS  Google Scholar 

  • Joshi, N. C., Nishizuka, N., Filippov, B., Magara, T., & Tlatov, A. G. (2018). Flux rope breaking and formation of a rotating blowout jet. Monthly Notices of the Royal Astronomical Society, 476, 1286–1298.

    Article  ADS  Google Scholar 

  • Klimchuk, J. (1998). Theory of spicules, jets, plumes, and other solar eruptions. In Solar jets and coronal plumes (pp. 233–237). ESA Special Publication 421.

    Google Scholar 

  • Koutchmy, S. (1969). Some morphological particularities of the solar corona on 22 September 1968. Astrophysical Letters, 4, 215–220.

    ADS  Google Scholar 

  • Koutchmy, S., & Stellmacher, G. (1976). Photometric study of chromospheric and coronal spikes observed during the total solar eclipse of 30 June 1973. Solar Physics, 49, 253–265.

    Article  ADS  Google Scholar 

  • Koutchmy, S., Kutvitskii, V. A., Molodenskii, M. M., & Solov'ev, L. S. (1994). Magnetic configurations of ray structures of the solar corona. Astronomy Reports, 38, 417–420.

    ADS  Google Scholar 

  • Lee, E. J., Archontis, V., & Hood, A. W. (2015). Helical blowout jets in the sun: Untwisting and propagation of waves. The Astrophysical Journal, 798, L10.

    Article  ADS  Google Scholar 

  • Lin, J., Forbes, T. G., Isenberg, P. A., & DĂ©moulin, P. (1998). The effect of curvature on flux-rope models of coronal mass ejections. The Astrophysical Journal, 504, 1006–1019.

    Article  ADS  Google Scholar 

  • Liu, C., Deng, N., Liu, R., Ugarte-Urra, I., Wang, S., & Wang, H. (2011). A standard-to-blowout jet. The Astrophysical Journal, 735, L18.

    Article  ADS  Google Scholar 

  • Loboda, I. P., & Bogachev, S. A. (2019). What is a macrospicule? The Astrophysical Journal, 871, 230.

    Article  ADS  Google Scholar 

  • Molodenskii, M. M., & Filippov, B. P. (1987). Rapid motion of filaments in solar active regions. II. Soviet Astronomy, 31, 564–568.

    ADS  Google Scholar 

  • Moore, R. L., Cirtain, J. W., Sterling, A. C., & Falconer, D. A. (2010). Dichotomy of solar coronal jets: Standard jets and blowout jets. The Astrophysical Journal, 720, 757–770.

    Article  ADS  Google Scholar 

  • Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G. E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A. H., Hochedez, J. F., Millier, F., Song, X. Y., Au, B., Dere, K. P., Howard, R. A., Kreplin, R., Michels, D. J., Defise, J. M., Jamar, C., Rochus, P., Chauvineau, J. P., Marioge, J. P., Catura, R. C., Lemen, J. R., Shing, L., Stern, R. A., Gurman, J. B., Neupert, W. M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., Van Dessel, E. L., & Gabryl, J. R. (1997). EIT observations of the extreme ultraviolet sun. Solar Physics, 175, 571–599.

    Article  ADS  Google Scholar 

  • Patsourakos, S., Pariat, E., Vourlidas, A., Antiochos, S. K., & Wuelser, J. P. (2008). STEREO/SECCHI stereoscopic observations constraining the initiation of polar coronal jets. The Astrophysical Journal, 680, L73–L76.

    Article  ADS  Google Scholar 

  • Platov, Y. V., Somov, B. V., & Syrovatskii, S. I. (1973). Possible mechanism of rurge formation in the solar atmosphere. Solar Physics, 30, 139–147.

    Article  ADS  Google Scholar 

  • Raadu, M. A., Malherbe, J. M., Schmider, B. S., & Mein, P. (1987). Material ejecta in a disturbed solar filament. Solar Physics, 109, 59–79.

    Article  ADS  Google Scholar 

  • Raouafi, N.-E., Petrie, G. J. D., Norton, A. A., Henney, C. J., & Solanki, S. K. (2008). Evidence for polar jets as precursors of polar plume formation. The Astrophysical Journal, 682, L137–L140.

    Article  ADS  Google Scholar 

  • Raouafi, N. E., Patsourakos, S., Pariat, E., Young, P. R., Sterling, A. C., Savcheva, A., Shimojo, M., Moreno-Insertis, F., DeVore, C. R., Archontis, V., Török, T., Mason, H., Curdt, W., Meyer, K., Dalmasse, K., & Matsui, Y. (2016). Solar coronal jets: Observations, theory, and modeling. Space Science Reviews, 201, 1–53.

    Article  ADS  Google Scholar 

  • Rompolt, B., & Svestka, Z. (1996). Flare-like dynamic phenomena. Advances in Space Research, 17, 115–124.

    Article  ADS  Google Scholar 

  • Roy, J.-R. (1973a). The magnetic properties of solar surges. Solar Physics, 28, 95–114.

    Article  ADS  Google Scholar 

  • Roy, J.-R. (1973b). The dynamics of solar surges. Solar Physics, 28, 139–151.

    Article  ADS  Google Scholar 

  • Savcheva, A., Cirtain, J., Deluca, E. E., Lundquist, L. L., Golub, L., Weber, M., Shimojo, M., Shibasaki, K., Sakao, T., Narukage, N., Tsuneta, S., & Kano, R. (2007). A study of polar jet parameters based on hinode XRT observations. Publications of the Astronomical Society of Japan, 59, S771–S778.

    Article  ADS  Google Scholar 

  • Schmieder, B., Golub, L., & Antiochos, S. K. (1994). Comparison between cool and hot plasma behaviors of surges. The Astrophysical Journal, 425, 326–330.

    Article  ADS  Google Scholar 

  • Schmieder, B., Guo, Y., Moreno-Insertis, F., Aulanier, G., Yelles Chaouche, L., Nishizuka, N., Harra, L. K., Thalmann, J. K., Vargas Dominguez, S., & Liu, Y. (2013). Twisting solar coronal jet launched at the boundary of an active region. Astronomy and Astrophysics, 559, 1.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., & Ibrahim, A. (2011). Kinematics and fine structure of an unwinding polar jet observed by the Solar Dynamic Observatory/Atmospheric Imaging Assembly. The Astrophysical Journal, 735, L43.

    Article  ADS  Google Scholar 

  • Shen, Y., Liu, Y., Su, J., & Deng, Y. (2012). On a coronal blowout jet: The first observation of a simultaneously produced bubble-like CME and a jet-like CME in a solar event. The Astrophysical Journal, 745, 164.

    Article  ADS  Google Scholar 

  • Shen, Y. (2021). Observation and modelling of solar jets. Proceedings of the Royal Society A, 477, 20200217.

    Article  ADS  Google Scholar 

  • Shibata, K. (1999). Evidence of magnetic reconnection in solar flares and a unified model of flares. Astrophysics and Space Science, 264, 129–144.

    Article  ADS  Google Scholar 

  • Shibata, K., Nishikawa, T., Kitai, R., & Suematsu, Y. (1982). Numerical hydrodynamics of the jet phenomena in the solar atmosphere – Part Two – Surges. Solar Physics, 77, 121–151.

    Article  ADS  Google Scholar 

  • Shibata, K., & Uchida, Y. (1986). Stee**-magnetic-twist mechanism for the acceleration of jets in the solar atmosphere. Solar Physics, 103, 299–310.

    Article  ADS  Google Scholar 

  • Shibata, K., Ishido, Y., Acton, L. W., Strong, K. T., Hirayama, T., Uchida, Y., McAllister, A. H., Matsumoto, R., Tsuneta, S., Shimizu, T., Hara, H., Sakurai, T., Ichimoto, K., Nishino, Y., & Ogawara, Y. (1992). Observations of X-ray jets with the YOHKOH soft X-ray telescope. Publications of the Astronomical Society of Japan, 44, L173–L179.

    ADS  Google Scholar 

  • Shibata, K., Nitta, N., Strong, K. T., Matsumoto, R., Yokoyama, T., Hirayama, T., Hudson, H., & Ogawara, Y. (1994). A gigantic coronal jet ejected from a compact active region in a coronal hole. The Astrophysical Journal, 431, L51–L53.

    Article  ADS  Google Scholar 

  • Shibata, K., Shimojo, M., Yokoyama, T., & Ohyama, M. (1996). Theory and observations of X-ray jets. In R. D. Bentley & J. T. Mariska (Eds.), Magnetic Reconnection in the Solar Atmosphere (ASP Conference Series) (Vol. 111, pp. 29–38). Astronomical Society of the Pacific.

    Google Scholar 

  • Shimojo, M., Hashimoto, S., Shibata, K., Hirayama, T., Hudson, H. S., & Acton, L. W. (1996). Statistical study of solar X-ray jets observed with the YOHKOH soft X-ray telescope. Publications of the Astronomical Society of Japan, 48, 123–136.

    Article  ADS  Google Scholar 

  • Shimojo, M., Narukage, N., Kano, R., Sakao, T., Tsuneta, S., Shibasaki, K., Cirtain, J. W., Lundquist, L. L., Reeves, K. K., & Savcheva, A. (2007). Fine structures of solar X-ray jets observed with the X-ray telescope aboard hinode. Publications of the Astronomical Society of Japan, 59, S745–S750.

    Article  ADS  Google Scholar 

  • St. Cyr, O. C., Howard, R. A., Simnett, G. M., Gurman, J. B., Plunkett, S. P., Sheeley, N. R., Schwenn, R., Koomen, M. J., Brueckner, G. E., Michels, D. J., Andrews, M., Biesecker, D. A., Cook, J., Dere, K. P., Duffin, R., Einfalt, E., Korendyke, C. M., Lamy, P. L., Lewis, D., Llebaria, A., Lyons, M., Moses, J. D., Moulton, N. E., Newmark, J., Paswaters, S. E., Podlipnik, B., Rich, N., Schenk, K. M., Socker, D. G., Stezelberger, S. T., Tappin, S. J., Thompson, B., & Wang, D. (1997). White-light coronal mass ejections: A new perspective from LASCO. In A. Wilson (Ed.), Correlated Phenomena at the Sun, in the Heliosphere and in Geospace. 31st ESLAB Symposium held 22-25 September, 1997, at ESTEC, Noordwijk, The Netherlands (Vol. 415, pp. 103–110). European Space Agency Special Publication.

    Google Scholar 

  • Steinolfson, R. S., Schmahl, E. J., & Wu, S. T. (1979). Hydrodynamic simulations of flare/surge events. Solar Physics, 63, 187–200.

    Article  ADS  Google Scholar 

  • Sterling, A. C. (2000). Solar spicules: A review of recent models and targets for future observations (Invited Review). Solar Physics, 196, 79–111.

    Article  ADS  Google Scholar 

  • Sterling, A. C., Harra, L. K., & Moore, R. L. (2010). Fibrillar chromospheric spicule-like counterparts to an extreme-ultraviolet andsoft X-ray blowout coronal jet. The Astrophysical Journal, 722, 1644–1653.

    Article  ADS  Google Scholar 

  • Suematsu, Y., Shibata, K., Neshikawa, T., & Kitai, R. (1982). Numerical hydrodynamics of the jet phenomena in the solar atmosphere – Part One – Spicules. Solar Physics, 75, 99–118.

    Article  ADS  Google Scholar 

  • Suematsu, Y., Ichimoto, K., Katsukawa, Y., Shimizu, T., Okamoto, T., Tsuneta, S., Tarbell, T., & Shine, R. A. (2008). High resolution observations of spicules with Hinode/SOT. In S. A. Matthews, J. M. Davis, & L. K. Harra (Eds.), First results from Hinode, Proceedings of the conference held 20–24 August, 2007, at Trinity College Dublin, Dublin, Ireland (ASP Conference Series) (Vol. 397, pp. 27–30). Astronomical Society of the Pacific.

    Google Scholar 

  • Tziotziou, K., Tsiropoula, G., & SĂĽtterlin, P. (2005). DOT tomography of the solar atmosphere.V. Analysis of a surge from AR10486. Astronomy and Astrophysics, 444, 265–274.

    Article  ADS  Google Scholar 

  • Van Tend, W., & Kuperus, M. (1978). The development of coronal electric current system in active regions and their relation to filaments and flares. Solar Physics, 59, 115–127.

    Article  ADS  Google Scholar 

  • Veselovsky, I. S. (1991). Nonstationary sub- and superalfvenic motions in the solar corona. Byulletin Solnechnye Dannye Akademie Nauk USSR, 11, 89–89.

    ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R., Jr., Socker, D. G., Howard, R. A., Brueckner, G. E., Michels, D. J., Moses, D., St. Cyr, O. C., Llebaria, A., & Delaboudinière, J.-P. (1998). Observations of correlated white-light and extreme ultraviolet jets from polar coronal holes. The Astrophysical Journal, 508, 899–907.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., & Sheeley, N. R., Jr. (2002). Coronal white-light jets near sunspot maximum. The Astrophysical Journal, 575, 542–552.

    Article  ADS  Google Scholar 

  • Wilhelm, K., Abbo, L., Auchere, F., Barbey, N., Feng, L., Gabriel, A. H., Giordano, S., Imada, S., Llebaria, A., Matthaeus, W. H., Poletto, G., Raouafi, N.-E., Suess, S. T., Teriaca, L., & Wang, Y.-M. (2011). Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes. The Astronomy and Astrophysics Review, 19, 35.

    Article  ADS  Google Scholar 

  • Wood, B. E., Karovska, M., Cook, J. W., Howard, R. A., & Brueckner, G. E. (1999). Kinematic measurements of polar jets observed by the large-angle spectrometric coronagraph. The Astrophysical Journal, 523, 444–449.

    Article  ADS  Google Scholar 

  • Yamauchi, Y., Moore, R. L., Suess, S. T., Wang, H., & Sakurai, T. (2004). The magnetic structure of Hα macrospicules in solar coronal holes. The Astrophysical Journal, 605, 511–520.

    Article  ADS  Google Scholar 

  • Yamauchi, Y., Wang, H., Jiang, Y., Schwadron, N., & Moore, R. L. (2005). Study of Hα macrospicules in coronal holes: Magnetic structure and evolution in relation to photospheric magnetic setting. The Astrophysical Journal, 629, 572–581.

    Article  ADS  Google Scholar 

  • Yokoyama, T., & Shibata, K. (1996). Numerical simulation of solar coronal X-ray jets based on the magnetic reconnection model. Publications of the Astronomical Society of Japan, 48, 353–376.

    Article  ADS  Google Scholar 

  • Zhang, Y. Z., Shibata, K., Wang, J. X., Mao, X. J., Matsumoto, T., Liu, Y., & Su, J. T. (2012). Revision of solar spicule classification. The Astrophysical Journal, 750, 16.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippov, B. (2024). Solar Jets. In: Eruptions on the Sun. Astrophysics and Space Science Library, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-031-58177-9_9

Download citation

Publish with us

Policies and ethics

Navigation