MuSTAT: Face Ageing Using Multi-scale Target Age Style Transfer

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2023)

Abstract

Most existing bottleneck-based Generative Adversarial Networks suffer from ghosting artifacts or blur for generating ageing results with an increased age gap. Although this can be solved using data collected over long age spans, it is challenging and tedious. This work proposes a multi-scale target age-based style face ageing model using an encoder-decoder architecture to generate high-fidelity face images under ageing. Further, we propose using skip connections with selective transfer units (STU) in the encoder-decoder architecture to adaptively select and modify the encoder feature to enhance face ageing results. Unlike conditional GAN (cGAN) approaches that rely on age as a condition to train the generator, we used style information gathered from a random image of the target age group to train the generator. The qualitative and quantitative results on public datasets show that our model can generate photo-realistic synthetic face images of the target age group. The proposed model can also generate diverse age groups for age progression and regression tasks. Furthermore, the analysis using six different Face Recognition Systems (FRS) also indicates the ability of the proposed approach to preserve the identity resulting in \(89.82\%\) False Non Match Rate (FNMR) at False Match Rate (FMR) of \(0.0001\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)

    Google Scholar 

  2. Boutros, F., Damer, N., Kirchbuchner, F., Kuijper, A.: ElasticFace: elastic margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1578–1587 (2022)

    Google Scholar 

  3. Chandaliya, P.K., Nain, N.: ChildGAN: face aging and rejuvenation to find missing children. Pattern Recogn. 129, 108761 (2022)

    Article  Google Scholar 

  4. Chandaliya, P.K., Sinha, A., Nain, N.: ChildFace: gender aware child face aging. In: BIOSIG 2020, pp. 255–263 (2020)

    Google Scholar 

  5. Chen, B.-C., Chen, C.-S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 768–783. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_49

    Chapter  Google Scholar 

  6. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015)

    Google Scholar 

  8. Georgopoulos, M., Oldfield, J., Nicolaou, M.A., Panagakis, Y., Pantic, M.: Enhancing facial data diversity with style-based face aging (2020)

    Google Scholar 

  9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  10. Grimmer, M., Ramachandra, R., Busch, C.: Deep face age progression: a survey. IEEE Access 9, 83376–83393 (2021). https://doi.org/10.1109/ACCESS.2021.3085835

    Article  Google Scholar 

  11. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. In: Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS 1993, pp. 3–10. Morgan Kaufmann Publishers Inc. (1993)

    Google Scholar 

  12. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization (2017)

    Google Scholar 

  13. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks (2018)

    Google Scholar 

  14. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR, pp. 4396–4405 (2019)

    Google Scholar 

  15. Kemelmacher-Shlizerman, I., Suwajanakorn, S., Seitz, S.M.: Illumination-aware age progression. In: CVPR, pp. 3334–3341 (2014)

    Google Scholar 

  16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2016)

    Google Scholar 

  17. Lanitis, A., Taylor, C., Cootes, T.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002). https://doi.org/10.1109/34.993553

    Article  Google Scholar 

  18. Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer. In: AAAI, pp. 2230–2236 (2017)

    Google Scholar 

  19. Liu, M., et al.: STGAN: a unified selective transfer network for arbitrary image attribute editing. In: CVPR (2019)

    Google Scholar 

  20. Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: CVPR, pp. 1–8 (2019)

    Google Scholar 

  21. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). http://arxiv.org/abs/1411.1784

  22. Praveen, K.C., Neeta, N.: Conditional perceptual adversarial variational autoencoder for age progression and regression on child face. In: ICB, pp. 1–8 (2019)

    Google Scholar 

  23. Chandaliya, P.K., Kumar, V., Harjani, M., Nain, N.: SCDAE: ethnicity and gender alteration on CLF and UTKFace dataset. In: CVIP, pp. 294–306 (2019)

    Google Scholar 

  24. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2016)

    Google Scholar 

  25. Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: CVPR, pp. 387–394 (2006)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 126(2), 144–157 (2018)

    Article  MathSciNet  Google Scholar 

  28. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs (2016)

    Google Scholar 

  29. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  30. Shi, Y., Jain, A.: Probabilistic face embeddings. In: ICCV, pp. 6901–6910 (2019)

    Google Scholar 

  31. Tazoe, Y., Gohara, H., Maejima, A., Morishima, S.: Facial aging simulator considering geometry and patch-tiled texture. In: ACM SIGGRAPH 2012 Posters, pp. 90:1–90:1 (2012)

    Google Scholar 

  32. Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  33. Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning face age progression: a pyramid architecture of GANs. In: CVPR, pp. 31–39. IEEE Computer Society (2018)

    Google Scholar 

  34. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  35. Zhang, K., Su, Y., Guo, X., Qi, L., Zhao, Z.: Mu-GAN: facial attribute editing based on multi-attention mechanism, vol. 8, p. 1614 (2021). https://doi.org/10.1109/JAS.2020.1003390

  36. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: CVPR, pp. 4352–4360. IEEE Computer Society (2017)

    Google Scholar 

  37. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2242–2251 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program under Grant 883356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Chandaliya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandaliya, P.K., Raja, K., Rajendra, G.S., Nain, N., Ramachandra, R., Busch, C. (2024). MuSTAT: Face Ageing Using Multi-scale Target Age Style Transfer. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2010. Springer, Cham. https://doi.org/10.1007/978-3-031-58174-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58174-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58173-1

  • Online ISBN: 978-3-031-58174-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation