Gene-Adjacency-Based Phylogenetics Under a Stochastic Gain-Loss Model

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14616))

Included in the following conference series:

  • 104 Accesses

Abstract

A key task in molecular systematics is to decipher the evolutionary history of strains of a species. Standard markers are often too crude in this fine systematic resolution to provide a phylogenetic signal. However, among prokaryotes, events in genome dynamics (GD) such as gene gain in horizontal gene transfer (HGT) between organisms and gene loss seem to provide a quite sensitive signal. The synteny index (SI) marker captures differences between a pair of genomes in terms of both gene order and gene content. Recently, it was shown to be consistent under the Jump model, a simple model of GD where the only operation is a gene jump.

In this work, we extend the Jump model to a richer model, allowing for gene gain/loss events, the most prevalent GD events in prokaryotic evolution. Despite the increased model complexity, our new representation yields a significant reduction in the number of variables, leading to a simple equation to estimate the model parameter and, consequently, the consistency of the phylogenetic reconstruction. Additionally, with a more straightforward representation, we can easily calculate the asymptotic variance of the parameter estimation, allowing us to obtain a bound for the expected error. We tested the new model and its associated reconstruction approach on actual and simulated data, where the theoretical asymptotic assumptions do not hold. Our simulation results show a very high accuracy under short evolutionary distances. Applying the method to several families in the ATGC database resulted in relative agreement with other reconstruction approaches based on other signals. The code is on GitHub under the link: https://github.com/shellybre/indels_project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abby, S.S., Tannier, E., Gouy, M., Daubin, V.: Lateral gene transfer as a support for the tree of life. Proc. Natl. Acad. Sci. 109(13), 4962–4967 (2012)

    Article  Google Scholar 

  2. Adato, O., Ninyo, N., Gophna, U., Snir, S.: Detecting horizontal gene transfer between closely related taxa. PLOS comp. Biol. 11, e1004408 (2015). https://doi.org/10.1371/journal.pcbi.1004408

  3. Anderson, W.J.: Continuous-Time Markov Chains: An Applications-oriented Approach. Springer, New York (2012)

    Google Scholar 

  4. Bansal, M.S., Kellis, M., Kordi, M., Kundu, S.: RANGER-DTL 2.0: rigorous reconstruction of gene-family evolution by duplication, transfer and loss. Bioinformatics 34(18), 3214–3216 (2018)

    Article  Google Scholar 

  5. Biller, P., Guéguen, L., Tannier, E.: Moments of genome evolution by double cut-and-join. BMC Bioinform. 16(14), S7 (2015)

    Article  Google Scholar 

  6. Billingsley, P.: Probability and Measure. Wiley, Hoboken (2008)

    Google Scholar 

  7. Braga, M.D., Willing, E., Stoye, J.: Double cut and join with insertions and deletions. J. Comput. Biol. 18(9), 1167–1184 (2011)

    Article  MathSciNet  Google Scholar 

  8. Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6(5), 361–375 (2005). https://doi.org/10.1038/nrg1603

    Article  Google Scholar 

  9. Doolittle, W.F.: Phylogenetic classification and the universal tree. Science 284(5423), 2124–9 (1999)

    Article  Google Scholar 

  10. Doyon, J.P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16181-0_9

    Chapter  Google Scholar 

  11. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17(6), 368–376 (1981)

    Article  Google Scholar 

  12. Fitz Gibbon, S.T., House, C.H.: Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 27(21), 4218–4222 (1999)

    Article  Google Scholar 

  13. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM (JACM) 46(1), 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  14. Huerta-Cepas, J., et al.: eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47(D1), D309–D314 (2018). https://doi.org/10.1093/nar/gky1085

    Article  Google Scholar 

  15. Huson, D.H., Steel, M.: Phylogenetic trees based on gene content. Bioinformatics 20(13), 2044–2049 (2004)

    Article  Google Scholar 

  16. Kapli, P., Yang, Z., Telford, M.J.: Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21(7), 428–444 (2020). https://doi.org/10.1038/s41576-020-0233-0

    Article  Google Scholar 

  17. Katriel, G., et al.: Gene transfer-based phylogenetics: analytical expressions and additivity via birth-death theory. Syst. Biol. 72, syad060 (2023). https://doi.org/10.1093/sysbio/syad060

    Article  Google Scholar 

  18. Koonin, E.V., Makarova, K.S., Aravind, L.: Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–42 (2001)

    Article  Google Scholar 

  19. Koonin, E.V., Makarova, K.S., Wolf, Y.I.: Evolution of microbial genomics: conceptual shifts over a quarter century. Trends Microbiol. 29(7), 582–592 (2021). https://doi.org/10.1016/j.tim.2021.01.005

    Article  Google Scholar 

  20. Koonin, E.V., Puigbo, P., Wolf, Y.I.: Comparison of phylogenetic trees and search for a central trend in the “forest of life’’. J. Comput. Biol. 18(7), 917–924 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kristensen, D.M., Wolf, Y.I., Koonin, E.V.: ATGC database and ATGC-COGs: an updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation. Nucleic Acids Res. 45(D1), D210–D218 (2017). https://doi.org/10.1093/nar/gkw934

    Article  Google Scholar 

  22. Lehmann, E.L., Casella, G.: Theory of Point Estimation. Springer, New York (2006)

    Google Scholar 

  23. Martin, W.: Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. BioEssays 21, 99–104 (1999)

    Article  Google Scholar 

  24. McInerney, J., McNally, A., O’Connell, M.: Why prokaryotes have pangenomes. Nat. Microbiol. 2(4) (2017). https://doi.org/10.1038/nmicrobiol.2017.40, https://eprints.whiterose.ac.uk/113972/. 2017 Macmillan Publishers Limited, part of Springer Nature. This is an author produced version of a paper published in Nature Microbiology. Uploaded in accordance with the publisher’s self-archiving policy

  25. Nakhleh, L., Ruths, D., Wang, L.S.: RIATA-HGT: a fast and accurate heuristic for reconstructing horizontal gene transfer. In: Wang, L. (ed.) Computing and Combinatorics. LNCS, vol. 3595, pp. 84–93. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_11

    Chapter  Google Scholar 

  26. Novichkov, P.S., Ratnere, I., Wolf, Y.I., Koonin, E.V., Dubchak, I.: ATGC: a database of orthologous genes from closely related prokaryotic genomes and a research platform for microevolution of prokaryotes. Nucleic Acids Res 37((Database issue)), D448-54 (2009)

    Article  Google Scholar 

  27. Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784), 299–304 (2000)

    Article  Google Scholar 

  28. Pang, T.Y., Lercher, M.J.: Each of 3,323 metabolic innovations in the evolution of E. coli arose through the horizontal transfer of a single DNA segment. Proc. Nat. Acad. Sci. U.S.A 116(1), 187–192 (2019). https://doi.org/10.1073/pnas.1718997115

    Article  Google Scholar 

  29. Puigbò, P., Wolf, Y.I., Koonin, E.V.: The tree and net components of prokaryote evolution. Genome Biol. Evol. 2, 745–756 (2010)

    Article  Google Scholar 

  30. Ragan, M.A., McInerney, J.O., Lake, J.A.: The network of life: genome beginnings and evolution. introduction. Philos. Trans. R. Soc. Lond B Biol. Sci. 364(1527), 2169–2175 (2009)

    Article  Google Scholar 

  31. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981)

    Article  MathSciNet  Google Scholar 

  32. Sankoff, D., Nadeau, J.H.: Conserved synteny as a measure of genomic distance. Discret. Appl. Math. 71(1–3), 247–257 (1996)

    Article  MathSciNet  Google Scholar 

  33. Schönknecht, G., Weber, A.P.M., Lercher, M.J.: Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. BioEssays 36(1), 9–20 (2014). https://doi.org/10.1002/bies.201300095, iSBN: 1521-1878 (Electronic)\(\backslash \) 265-9247 (Linking)

  34. Serdoz, S., et al.: Maximum likelihood estimates of pairwise rearrangement distances. J. Theor. Biol. 423, 31–40 (2017)

    Article  MathSciNet  Google Scholar 

  35. Sevillya, G., Doerr, D., Lerner, Y., Stoye, J., Steel, M., Snir, S.: Horizontal gene transfer phylogenetics: a random walk approach. Mol. Biol. Evol. 37(5), 1470–1479 (2019). https://doi.org/10.1093/molbev/msz302

    Article  Google Scholar 

  36. Sevillya, G., Snir, S.: Synteny footprints provide clearer phylogenetic signal than sequence data for prokaryotic classification. Mol. Phylogenet. Evol. 136, 128–137 (2019)

    Article  Google Scholar 

  37. Shifman, A., Ninyo, N., Gophna, U., Snir, S.: Phylo SI: a new genome-wide approach for prokaryotic phylogeny. Nucleic Acids Res. 42(4), 2391–2404 (2013)

    Article  Google Scholar 

  38. Snel, B., Bork, P., Huynen, M.A.: Genome phylogeny based on gene content. Nat. Genet. 21(1), 108–110 (1999). https://doi.org/10.1038/5052

    Article  Google Scholar 

  39. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), i409–i415 (2012)

    Article  Google Scholar 

  40. Sumner, J.G., Jarvis, P.D., Francis, A.R.: A representation-theoretic approach to the calculation of evolutionary distance in bacteria. J. Phys. A: Math. Theor. 50(33), 335601 (2017)

    Article  MathSciNet  Google Scholar 

  41. Tatusov, R.L., et al.: The cog database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29(1), 22–28 (2001)

    Article  Google Scholar 

  42. Terauds, V., Sumner, J.: Maximum likelihood estimates of rearrangement distance: implementing a representation-theoretic approach. Bull. Math. Biol. 81(2), 535–567 (2019)

    Article  MathSciNet  Google Scholar 

  43. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 8(2), 517–535 (2011)

    Article  Google Scholar 

  44. Vanchurin, V., Wolf, Y.I., Koonin, E.V., Katsnelson, M.I.: Thermodynamics of evolution and the origin of life. Proc. Nat. Acad. Sci. 119(6), e2120042119 (2022). https://doi.org/10.1073/pnas.2120042119, https://www.pnas.org/doi/abs/10.1073/pnas.2120042119

  45. Wolf, Y., Rogozin, I., Grishin, N., Koonin, E.V.: Genome trees and the tree of life. Trends Genet. 18(9), 472–479 (2002)

    Article  Google Scholar 

  46. Wolf, Y.I., Makarova, K.S., Lobkovsky, A.E., Koonin, E.V.: Two fundamentally different classes of microbial genes. Nat. Microbiol. 2, 16208 (2016). https://doi.org/10.1038/nmicrobiol.2016.208

    Article  Google Scholar 

  47. Wolf, Y.I., Rogozin, I.B., Grishin, N.V., Koonin, E.V.: Genome trees and the tree of life. Trends Genet. 18(9), 472–479 (2002)

    Article  Google Scholar 

  48. Woodhams, M., Steane, D.A., Jones, R.C., Nicolle, D., Moulton, V., Holland, B.R.: Novel distances for Dollo data. Syst. Biol. 62(1), 62–77 (2012)

    Article  Google Scholar 

  49. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

  50. Zhaxybayeva, O., Gogarten, J.P., Charlebois, R.L., Doolittle, W.F., Papke, R.T.: Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 16(9), 1099–1108 (2006)

    Article  Google Scholar 

  51. Zuckerkandl, E., Pauling, L.: Molecules as documents of evolutionary history. J. Theor. Biol. 8(2), 357–66 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoav Dvir , Shelly Brezner or Sagi Snir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dvir, Y., Brezner, S., Snir, S. (2024). Gene-Adjacency-Based Phylogenetics Under a Stochastic Gain-Loss Model. In: Scornavacca, C., Hernández-Rosales, M. (eds) Comparative Genomics. RECOMB-CG 2024. Lecture Notes in Computer Science(), vol 14616. Springer, Cham. https://doi.org/10.1007/978-3-031-58072-7_4

Download citation

Publish with us

Policies and ethics

Navigation