Single-Cell Protein and Biodiesel Production from Agro-Industrial Waste

  • Chapter
  • First Online:
Agro-waste to Microbe Assisted Value Added Product: Challenges and Future Prospects

Abstract

Single-cell protein (SCP) and biodiesel are high-value products made from agro-industrial waste by microorganisms. Dry microbial biomass is high in protein and can be used in food and feed. Renewable biodiesel can replace diesel in transportation. Microbes help make SCP and biodiesel from agro-industrial waste. SCP is made by fermenting trash into protein-rich biomass with bacteria. Waste lipids are trans esterified by bacteria to make biodiesel. Several bacteria can produce SCP and biodiesel from agro-industrial waste. Bacteria, yeasts, and algae are common microorganisms. Waste type and desired product determine the microorganism utilized. SCP and biodiesel from agro-industrial waste provide many benefits. First, transforming agro-industrial waste into marketable products reduces its environmental impact. Second, it produces protein and biodiesel sustainably. Third, it can develop rural jobs and economic prospects from agro-industrial waste. Microbes help make SCP and biodiesel from agro-industrial waste. SCP is made by fermenting trash into protein-rich biomass with bacteria. Microbes convert complex carbohydrates and other nutrients in waste into growth chemicals. Microbes synthesize proteins from these substances. Waste lipids are transesterified by bacteria to make biodiesel. Biodiesel and glycerol are produced via transesterification of lipid triglycerides with alcohol. Microbes produce transesterification enzymes. Several firms are develo** SCP and biodiesel from agro-industrial waste. Several research efforts are also improving SCP and biodiesel production from agro-industrial waste. Waste material variety makes SCP and biodiesel synthesis from agro-industrial waste difficult. Agro-industrial waste composition depends on crop or food product, season, and processing methods. This can hinder SCP and biodiesel production optimization. Another issue is SCP and biodiesel production costs. To compete with conventional protein sources and fuels, SCP and biodiesel must have low production costs. Despite these challenges, SCP and biodiesel production from agro-industrial waste could help create a more sustainable food and energy system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 136.95
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOD:

Biological Oxygen Demand

COD:

Chemical Oxygen Demand

DIJ:

Deproteinized Leaf Juice

FAO:

Food and Agriculture Organization

FFA:

Free Fatty Acids

FW:

Food Waste

GHG:

Green House Gas

SCP:

Single-cell Protein

SSF:

Solid-State Fermentation

WHO:

World Health Organization

References

  • AlvesSC D-R, Lisboa B, Sharma M, Mussatto SI, Thakur VK, Chandel AK (2023) Microbial meat: a sustainable vegan protein source produced from agri-waste to feed the world. Food Res Int 166:112596

    Article  Google Scholar 

  • Al-Zaini EO, Al-Kafaji,MH, Al-Suhail AB, Farhan MM, Jabur AT, Jaber AA, Nassef KD (2023) A review of bio-kerosene and biodieselexisted production technologies. In: AIP conference proceedings, vol 2776(1):050007

    Google Scholar 

  • Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO (2014) A review of current technology for biodieselproduction: state of the art. Biomass Bioenerg 61:276–297

    Article  CAS  Google Scholar 

  • Argyle MD, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5:145–269

    Google Scholar 

  • Arshad M, Syed-Hassan SSA, Masood R, Ansari AR, Mumtaz A, Rahman A, Saba I (2023) Utilization of waste animal fat for sustainable biodiesel production. In: Climate changes mitigation and sustainable bioenergy harvest through animal waste: sustainable environmental implications of animal waste, Springer Nature Switzerland, Cham, pp 149–169

    Google Scholar 

  • Athar M, Zaidi S (2020) A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J Environ Chem Eng 8(6):104523

    Article  CAS  Google Scholar 

  • Awogbemi O, Von Kallon DV (2023) Application of biochar derived from crops residues for biofuel production. Fuel Commun 15:100088

    Google Scholar 

  • Bajpai P (ed) (2017) Single cell protein production from lignocellulosic biomass; springer briefs in molecular science, Singapore, Springer. ISBN 978–981–10–5873–8

    Google Scholar 

  • Bhatia SK, Bhatia RK, Jeon JM, Pugazhendhi A, Awasthi MK, Kumar D, YangYH (2021)An overview on advancements in biobased transesterification methods for biodiesel production: Oil resources, extraction, biocatalysts, and process intensification technologies. Fuel 285:119117

    Google Scholar 

  • Cheng R, Ye T, Zhou Y (2023) Microbial-based food proteins preparation and food safety analysis. Highlights Sci Eng Technol 36:392–400

    Article  Google Scholar 

  • Chhikara N, Panghal A, Chaudhary G (Eds.) (2023) Microbes in the food industry. John Wiley & Sons

    Google Scholar 

  • Costa JM, Ampese LC, Ziero HDD, Sganzerla WG, Forster-Carneiro T (2022) Apple pomace biorefinery: integrated approaches for the production of bioenergy, biochemicals, and value-added products–an updated review. J Environ Chem Eng 108358

    Google Scholar 

  • Ding H, Li J, Deng F, Huang S, Zhou P, Liu X, Li D (2023) Ammonia nitrogen recovery from biogas slurry by SCP production using Candida utilis. J Environ Manage 325:116657

    Article  CAS  Google Scholar 

  • Duraisam R, Salelgn K, Berekete AK (2017) Production of beet sugar and bio-ethanol from sugar beet and it bagasse: a review. Int J Eng Trends Technol 43(4):222–233

    Article  Google Scholar 

  • Dwivedi S, Tanveer A, Yadav S, Anand G, Yadav D (2022) Agro‐Wastes for cost effective production of industrially important microbial enzymes: an overview. Microb Biotechnol Role Ecol Sustain Res 435–460

    Google Scholar 

  • Fathima S, Shanmugasundaram R, Sifri M, Selvaraj R (2023) Yeasts and yeast-based products in poultry nutrition. J Appl Poultr Res 100345

    Google Scholar 

  • Firoz S (2017) A review: advantages and disadvantages of biodiesel. Int Res J Eng Technol 4(11):530–533

    Google Scholar 

  • Food and Agricultural Organization of United Nations (FAO) (2018) Global statistical collections: global capture production and global aquaculture production. http://www.fao.org/fishery/statistics/. Accessed on 2 Oct 2023

  • Food and Agriculture Organization of the United Nations (2014a) Food Wastage footprint: full-cost accounting. http://www.fao.org/3/a-i3991e.pdf

  • Food and Agriculture Organization of the United Nations (2014b) Food wastage footprint: impacts on natural resources. http://www.fao.org/docrep/018/i3347e/i3347e.pdf

  • García-Garibay M, Gómez-Ruiz L, Cruz-Guerrero AE, Bárzana E (2014) SINGLE CELL PROTEIN | yeasts and bacteria. In: Batt, CA, Tortorello, ML (eds) Encyclopedia of food microbiology, 2nd ed, Oxford, UK, Academic Press, pp 431–438, ISBN 978–0–12–384733–1

    Google Scholar 

  • Geer TD, Calomeni AJ, Kinley CM, Iwinski KJ, Rodgers JH (2017) Predicting in situ responses of taste-and odor-producing algae in a southeastern US reservoir to a sodium carbonate peroxyhydrate algaecide using a laboratory exposure-response model. Water Air Soil Pollut 228:1–14

    Article  CAS  Google Scholar 

  • Gervasi T, Pellizzeri V, Calabrese G, Di Bella G, Cicero N, Dugo G (2018) Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae. Nat Prod Res 32(6):648–653

    Google Scholar 

  • Ginni G, Kavitha S, Kannah Y, Bhatia SK, Kumar A, Rajkumar M, Chi NTL (2021) Valorization of agricultural residues: different biorefinery routes. J Environ Chem Eng 9(4):105435

    Article  Google Scholar 

  • Gnanasekaran L, Priya AK, Thanigaivel S, Hoang TK, Soto-Moscoso M (2023) The conversion of biomass to fuels via cutting-edge technologies: Explorations from natural utilization systems. Fuel 331:125668

    Google Scholar 

  • Hoang AT, Pandey A, Huang Z, Nižetić S, Le AT, Nguyen XP (2023) Biofuels an option for agro-waste management. In: Environmental sustainability of biofuels, pp 27–47

    Google Scholar 

  • Kalak T (2023) Potential use of industrial biomass waste as a sustainable energy source in the future. Energies 16(4):1783

    Article  CAS  Google Scholar 

  • Kam S, Kenari AA, Younesi H (2012) Production of single cell protein in stickwater by Lactobacillus acidophilus and Aspergillus niger. J Aqua Food Prod Tech 21(403):417

    Google Scholar 

  • Kandemir K, Piskin E, **ao J, Tomas M, Capanoglu E (2022) Fruit juice industry wastes as a source of bioactives. J Agric Food Chem 70(23):6805–6832

    Article  CAS  Google Scholar 

  • Kobayashi Y, Mohammad EW, Guðmundsson H, Guðmundsdóttir EE, Friðjónsson ÓH, Karlsson EN, Tuomisto HL (2023) Life-cycle assessment of yeast-based single-cell protein production with oat processing side-stream. Sci Total Environ 873:162318

    Article  CAS  Google Scholar 

  • Koul B, Yakoob M, Shah MP (2022) Agricultural waste management strategies for environmental sustainability. Environ Res 206:112285

    Article  CAS  Google Scholar 

  • Kumar S, Paritosh K, Pareek N, Chawade A, Vivekanand V (2018) De-construction of major Indian cereal crop residues through chemical pretreatment for improved biogas production: an overview. Renew Sustain Energy Rev 90:160–170

    Article  CAS  Google Scholar 

  • Lähteenmäki-Uutela A, Rahikainen M, Lonkila A, Yang B (2021) Alternative proteins and EU food law. Food Control 130:108336

    Article  Google Scholar 

  • Lee J, Kim S, You S, Park YK (2023) Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renew Sustain Energy Rev 178:113240

    Article  CAS  Google Scholar 

  • Levine RB, Pinnarat T, Savage PE (2010) Production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels 24:5235–5243

    Article  CAS  Google Scholar 

  • Li QS, WangR MZY, Zhang XM, Jiao JZ, Zhang ZG, Wang M (2022) Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. ISME J 16(11):2535–2546

    Article  CAS  Google Scholar 

  • Liu B, Li Y, Song J, Zhang L, Dong J, Yang Q (2014) Production of single-cell protein with two-step fermentation for treatment of potato starch processing waste. Cellulose 21(3637):3645

    Google Scholar 

  • Liu Z, de Souza TS, Holland B, Dunshea F, Barrow C, Suleria HA (2023) Valorization of food waste to produce value-added products based on its bioactive compounds. Processes 11(3):840

    Article  CAS  Google Scholar 

  • Loures CCA, Amaral MS, Da Rós PCM, Zorn SMFE, de Castro HF, Silva MB (2018) Simultaneous esterification and transesterification of microbial oil from Chlorella minutissima by acid catalysis route: a comparison between homogeneous and heterogeneous catalysts. Fuel 211:261–268

    Google Scholar 

  • Ma G, Hu W, Pei H, Jiang L, Song M, Mu R (2015) In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation. Energy Convers Manag 90:41–46

    Article  CAS  Google Scholar 

  • Mahan KM, Le RK, Wells T Jr, Anderson S, Yuan JS, Stoklosa RJ, Ragauskas AJ (2018) Production of single cell protein from agro-waste using Rhodococcusopacus. J Ind Microbiol Biotechnol 45(9):795–801

    Article  CAS  Google Scholar 

  • Martinez-Guerra E, Gude VG, Mondala A, Holmes W, Hernandez R (2014) Microwave and ultrasound enhanced extractivetransesterification of algal lipids. Appl Energy 129:354–363

    Article  CAS  Google Scholar 

  • Matassa S, Boon N, Pikaar I, Verstraete W (2016) Microbial protein: future sustainable food supply route with low environmental footprint. Microb Biotechnol 9:568–575

    Article  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  Google Scholar 

  • Najari Z, Khodaiyan F, Yarmand MS, Hosseini SS (2022) Almond hulls waste valorization towards sustainable agricultural development: production of pectin, phenolics, pullulan, and single cell protein. Waste Manage 141:208–219

    Article  CAS  Google Scholar 

  • Nanda S, Berruti F (2021) Municipal solid waste management and landfilling technologies: a review. Environ Chem Lett 19:1433–1456

    Article  CAS  Google Scholar 

  • Nangul A, Bhatia R (2013) Microorganisms: a marvelous source of single cell proteins. J Microbiol Biotechnol Food Sci 3(1):15–18

    CAS  Google Scholar 

  • Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawaid M, Ibrahim FH (2017) Biomass and bioenergy: an overview of the development potential in Turkey and Malaysia. Renew Sustain Energy Rev 79:1285–1302

    Article  Google Scholar 

  • Panahi HKS, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabaei M (2020) Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy 145:699–710

    Article  Google Scholar 

  • Papademas P, Kotsaki P (2019) Technological utilization of whey towards sustainable exploitation. J Adv Dairy Res 7(4):231

    Google Scholar 

  • Papini G, Muys M, Van Winckel T, Meerburg FA, Van Beeck W, Vermeir P, Vlaeminck SE (2023) Boosting aerobic microbial protein productivity and quality on brewery wastewater: impact of anaerobic acidification, high-rate process and biomass age. Biores Technol 368:128285

    Article  CAS  Google Scholar 

  • Pillaca-Pullo OS, Lopes AM, Rodriguez-Portilla LM, Estela-Escalante W (2023) Optimizing medium composition with wastewater from Coffea arabica processing to produce single-cell protein using Candida sorboxylosa. J Chem Technol Biotechnol 98(1):106–116

    Article  CAS  Google Scholar 

  • Popp J, Kovács S, Oláh J, Divéki Z, Balázs E (2021) Bioeconomy: biomass and biomass-based energy supply and demand. New Biotechnol 60:76–84

    Article  CAS  Google Scholar 

  • Pryshliak N, Tokarchuk D (2020) Socio-economic and environmental benefits of biofuel production development from agricultural waste in Ukraine. Environ Socio-Econ Stud 8(1):18–27

    Article  Google Scholar 

  • Rana AK, Gupta VK, Newbold J, Roberts D, Rees RM, Krishnamurthy S, Thakur VK (2022) Sugar beet pulp: resurgence and trailblazing journey towards a circular bioeconomy. Fuel 312:122953

    Article  CAS  Google Scholar 

  • Reihani SFS, Khosravi-Darani K (2019) Influencing factors on single-cell protein production by submerged fermentation: a review. Electron J Biotechnol 37:34–40

    Article  CAS  Google Scholar 

  • Rezania S, Oryani B, Park J, Hashemi B, Yadav KK, Kwon EE, Cho J (2019) Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Convers Manage 201:112155

    Article  CAS  Google Scholar 

  • Ritala A, Häkkinen ST, Toivari M, Wiebe MG (2017) Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front Microbiol 8:2009

    Article  Google Scholar 

  • Sakina A, Nazir N, Sultan P, Hassan QP (2023) Bioconversion of agricultural residues and waste to value added products. In: Value-addition in agri-food industry waste through enzyme technology, Academic Press, pp 355–364

    Google Scholar 

  • Salelign K, Duraisamy R (2021) Sugar and ethanol production potential of sweet potato (Ipomoea batatas) as an alternative energy feedstock: processing and physicochemical characterizations. Heliyon 7(11):e08402

    Article  CAS  Google Scholar 

  • Sharif M, Zafar MH, Aqib AI, Saeed M, Farag MR, Alagawany M (2021) Single cell protein: sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 531:735885

    Article  CAS  Google Scholar 

  • Sharma R, Dwivedi K, Sharma B, Sharma S (2023) New Advancements of biofuel extractions and future trends. Biofuel Extract Techn 543–557

    Google Scholar 

  • Sheth U, Patel S (2023) Production, economics, and marketing of yeast single cell protein. in food microbiology based entrepreneurship: making money from microbes. Springer Nature Singapore, Singapore, pp 133–152

    Google Scholar 

  • Shirazi HM, Karimi-Sabet J, Ghotbi C (2017) Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition. Bioresource Technol 239:378–386

    Google Scholar 

  • Singh NK, Singh Y, Kumar V, Singh, B (2023) Biodiesel as a potential replacement fuel for CI engine to meet the sustainability criteria: a review. Mater Today Proceed

    Google Scholar 

  • Singh P, Dubey P, Younis K, Yousuf O (2022) A review on the valorization of coconut shell waste. Biomass Convers Biorefin 1–11

    Google Scholar 

  • Singh S, Sinha RK (2021) Vermicomposting of organic wastes by earthworms: Making wealth from waste by converting ‘garbage into gold’ for farmers. Adv Organ Waste Manage 93–120

    Google Scholar 

  • Sisman G, Dogan M, Algur T (2013) Single-cell protein as an alternative food for zebrafish, Danio rerio: a toxicological assessment. Toxicol Ind Health 29(792):799

    Google Scholar 

  • Sivaramakrishnan R, Incharoensakdi A (2017) Production of methyl ester from two microalgae by two-step transesterification and direct transesterification. Environ Sci Pollut Res 24:4950–4963

    Article  CAS  Google Scholar 

  • Spalvins K, Ivanovs K, Blumberga D (2018) Single cell protein production from waste biomass: review of various agricultural by-products. Energy Procedia 147:409–418

    Article  CAS  Google Scholar 

  • Suman G, Nupur M, Anuradha S, Pradeep B (2015) Single cell protein production: a review. Int J Curr Microbiol App Sci 4:251–262

    Google Scholar 

  • Thilakarathne D, Miyuranga KV, Arachchige USPR, Weerasekara NA, Jayasinghe RA (2021) Production of biodiesel from waste cooking oil in laboratory scale: a review. Int J Sci Eng Sci 5(6):28–34

    Google Scholar 

  • Tian Y, Li J, Meng J, Li J (2023) High-yield production of single-cell protein from starch processing wastewater using co-cultivation of yeasts. Biores Technol 370:128527

    Article  CAS  Google Scholar 

  • Tropea A, Ferracane A, Albergamo A, Potortì AG, Lo TurcoV, Di Bella G (2022) Single cell protein production through multi food-waste substrate fermentation. Fermentation 8(3):91

    Google Scholar 

  • Tsigie YA, Huynh LH, Ismadji S, Engida AM, Ju YH (2012) In situ biodiesel production from wet Chlorella vulgaris under subcritical condition. Chem Eng J 213:104–108

    Article  CAS  Google Scholar 

  • Upadhyaya S, Tiwari SH, Arora N, Singh DP (2016) Microbial protein: a valuable component for future food security. Microbes Environ Manag 8:259

    Google Scholar 

  • Valentino MJG, Ganado LS, Undan JR (2016) Single cell protein potential of endophytic fungi associated with bamboo using rice bran as substrate. Adv Appl Sci Res 7(3):68–72

    CAS  Google Scholar 

  • Velusamy K, Devanand J, Kumar PS, Soundarajan K, Sivasubramanian V, Sindhu J, Vo DVN (2021) A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel 306:121632

    Article  CAS  Google Scholar 

  • WongputtisinP KC, Kongbuntad W, NiamsupP LS, Sarkar PK (2014) Use of Bacillus subtilis isolates from Tea-nao towards nutritional improvement of soya bean hull for monogastric feed application. Letr Appl Microbiol 59(328):333

    Google Scholar 

  • **ong W, Li X, **ang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    Article  CAS  Google Scholar 

  • Yadav JSS, Bezawada J, Elharche S, Yan S, Tyagi RD, Surampalli RY (2013) Simultaneous single-cell protein production and COD removal with characterization of residual protein. Bioprocess Biosyst Eng 37(6):1017–1029

    Article  Google Scholar 

  • Yang R, Chen Z, Hu P, ZhangS LG (2022) Two-stage fermentation enhanced single-cell protein production by Yarrowialipolytica from food waste. Biores Technol 361:127677

    Article  CAS  Google Scholar 

  • Yilmaz N, Atmanli A (2017) Sustainable alternative fuels in aviation. Energy 140:1378–1386

    Article  Google Scholar 

  • Zeng D, Wang S, Jiang Y, Su Y, Zhang Y (2023) Recovery and upcycling of residual lactic acid and ammonium from biowaste into yeast single cell protein. Sep Purif Technol 314:123632

    Article  CAS  Google Scholar 

  • Zhang X, Ma Q, Cheng B, Wang J, Li J, Nie F (2012) Research on KOH/La-Ba-Al2O3 catalysts for biodiesel production via transesterification from microalgae oil. J Nat Gas Chem 21:774–779

    Article  CAS  Google Scholar 

  • Zhao S, Wang ZB, Wang YC, Yang PY, Luo XM, Wu AM, Feng JX (2023) Sustainable coproduction of xylooligosaccharide, single-cell protein and lignin-adsorbent through whole components’ utilization of sugarcane bagasse with high solid loading. Sep Purif Technol 308:122916

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Rawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, R., Singh, P., Singh, R. (2024). Single-Cell Protein and Biodiesel Production from Agro-Industrial Waste. In: Saha, S.P., Mazumdar, D., Roy, S., Mathur, P. (eds) Agro-waste to Microbe Assisted Value Added Product: Challenges and Future Prospects. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-58025-3_6

Download citation

Publish with us

Policies and ethics

Navigation