Atoms and Early Atomic Models

  • Chapter
  • First Online:
Old Quantum Theory and Early Quantum Mechanics

Part of the book series: Challenges in Physics Education ((CPE))

  • 58 Accesses

Abstract

Since ancient times, one of the fundamental questions for mankind has concerned the constitution of matter. The first answer was offered by the Greek philosophers, by means of the concept of atom. In the late eighteenth century, chemists began to understand how substances combine to form compounds in various reactions. In the mid-nineteenth century, also physicists began to use the ideas of atoms and molecules to explain the properties of gases. In this chapter we will show how in the late nineteenth century the idea of the atom as an indivisible entity and primary constituent of matter began to falter, together with the atomic model proposed by Lord Kelvin. We will also discuss some aspects related to the field of spectroscopy, and we will introduce two fundamental discoveries which were made in those years: that of cathode rays, thanks to the experimental works of J. Plücker, J. W. Hittorf, E. Goldstein and W. Crookes, and that of X-rays, made by W. C. Röntgen. We will conclude by discussing the invention of the cloud chamber, by C. T. R. Wilson.

Matter, though divisible in an extreme degree, is nevertheless not infinitely divisible. That is, there must be some point beyond which we cannot go in the division of matter […]. I have chosen the word “atom” to signify these ultimate particles [Dalton (1810a), mentioned in: Freund (1904), p. 288].

John Dalton

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 196.87
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 242.64
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Boyle (1661).

  2. 2.

    Watts (1725).

  3. 3.

    Dalton (1808).

  4. 4.

    Dalton (1810a).

  5. 5.

    Dalton (1827).

  6. 6.

    Dalton (1810a), p. 546.

  7. 7.

    Lavoisier (1789), p. 101.

  8. 8.

    Proust (1794), p. 341.

  9. 9.

    Dalton (1805) [also contained in: Dalton (1806)].

  10. 10.

    More than a century later, it will be discovered that atoms of the same element can have different weights (isotopes), but also that atoms with the same weight can belong to different elements. Therefore, Dalton’s hypothesis was only approximately correct …

  11. 11.

    Gay-Lussac (1809).

  12. 12.

    Richter (1792).

  13. 13.

    Richter (17921802).

  14. 14.

    Quaregna and Cerreto currently form a small Italian town in the province of Biella, in Piemonte.

  15. 15.

    Despite commons ideas, the first (or one of the first) to coin the term “molecule” (defined as two or more atoms joined together in an attachment) was Gassendi, in his 1649 commentary Arrangement of the Philosophy of Epicurus [Gassendi (1649), p. 261].

  16. 16.

    Avogadro (1811).

  17. 17.

    Ampère (1814).

  18. 18.

    In 1860, four years after Avogadro’s death, during the last day of Karlsruhe Congress (an international meeting of chemists held in Karlsruhe, Germany, on 3–5 September, which represented the first international conference of chemistry), reprints of an 1858 publication by Cannizzaro on atomic weights were distributed. In that essay, titled Sketch of a course of chemical philosophy [Cannizzaro (1858).] the scientist used the previous work of Avogadro. Cannizzaro’s efforts exerted a strong and immediate influence on the delegates. The German chemist Julius Lothar Meyer (Varel, 1830–Tübingen, 1895), and Mendeleev were particularly influenced by it, subsequently elaborating the periodic table of the elements recognizing the validity of the considerations made by Cannizzaro.

  19. 19.

    At the time located in Prussia, it is now the city of Wąbrzeźno, in Poland.

  20. 20.

    Now it is the city of Niwica, in Poland.

  21. 21.

    Present-day Koszalin, Poland.

  22. 22.

    Faraday (1834), pp. 78–79.

  23. 23.

    Faraday (1834).

  24. 24.

    Helmholtz (1858).

  25. 25.

    Vorticity represents, point by point, how much a fluid is spinning on itself. Therefore, it provides the axis of rotation, the direction of rotation (clockwise or counterclockwise) and the speed of rotation; from this, we understand that the vorticity is essentially represented by a (pseudo)vector. For those who love mathematics, and in modern terms, vorticity is given by the curl of the fluid velocity at the point considered.

  26. 26.

    Tait (1876), p 292.

  27. 27.

    Nowadays, we can easily find toy tools on the market that shoot smoke rings.

  28. 28.

    Thomson (1867a) [reprinted as: Thomson (1867b)].

  29. 29.

    Thomson (1867a), p. 94.

  30. 30.

    A comprehensive account of Kelvin’s life can be found in: Thomson (1910).

  31. 31.

    Anonymous (1907a), p. 4.

  32. 32.

    Anonymous (1907b).

  33. 33.

    Anonymous (1907c).

  34. 34.

    Anonymous (1907d).

  35. 35.

    Therefore, they should be made of a continuous and infinitely divisible medium.

  36. 36.

    Thomson (1882b).

  37. 37.

    Tait (1877b).

  38. 38.

    Tait (1878f).

  39. 39.

    Tait (1878g).

  40. 40.

    Tait (1878c).

  41. 41.

    Tait (1886).

  42. 42.

    Tait (1877a).

  43. 43.

    Tait (1877b).

  44. 44.

    Tait (1877c).

  45. 45.

    Tait (1877d).

  46. 46.

    Tait (1878a).

  47. 47.

    Tait (1878d).

  48. 48.

    Tait (1878e).

  49. 49.

    Tait (1884).

  50. 50.

    Tait (1878c), p. 342.

  51. 51.

    Thomson (1883).

  52. 52.

    Thomson (1884).

  53. 53.

    The Adams Prize is a very prestigious prize awarded (in general) each year, since 1850, by the University of Cambridge to a mathematician who “holds an appointment in the UK, either in a university or in some other institution; and who is under 40 (in exceptional circumstances the Adjudicators may relax this age limit)” [https://www.maths.cam.ac.uk/adams-prize]. The prize is named after the mathematician John Couch Adams (Laneast, 1819–Cambridge, 1892), who had an import role in the discovery of the planet Neptune. Adams Prize winners included several famous scientists, as Maxwell and J. J. Thomson.

  54. 54.

    Thomson (1882a).

  55. 55.

    Thomson (1867a), p. 94.

  56. 56.

    Daniel Bernoulli (Groningen, 1700–Basel, 1782) was a Swiss mathematician and physicist.

  57. 57.

    John Herapath (Bristol, 1790–Catford Bridge, 1868) was an English physicist.

  58. 58.

    James Prescott Joule (Salford, 1818–Sale, 1889) and was an English physicist and mathematician.

  59. 59.

    August Karl Krönig (Schildesche, 1822–Berlin, 1879) was a German chemist and physicist.

  60. 60.

    Rudolf Julius Emanuel Clausius (Köslin, 1822–Bonn, 1888) was a German physicist and mathematician.

  61. 61.

    Thomson (1867a), p. 95.

  62. 62.

    The Russian chemist Mendeleev published “his” periodic table of the elements by the end of the 1860s in: Mendeleev (1869b) and also in: Mendeleev (1869a).

  63. 63.

    Wiedemann (1913).

  64. 64.

    Lindberg (1976).

  65. 65.

    El-Bizri (2006).

  66. 66.

    El-Bizri (2009).

  67. 67.

    Kirchner (2015).

  68. 68.

    Kircher (1646).

  69. 69.

    Marci (1648).

  70. 70.

    Boyle (1664).

  71. 71.

    Grimaldi (1665).

  72. 72.

    Newton (1958), pp. 47–48.

  73. 73.

    Newton (1704).

  74. 74.

    Dingle (1963).

  75. 75.

    A comprehensive account can be found in: Brand (1995).

  76. 76.

    Wollaston (1802).

  77. 77.

    Flint glass is a type of glass with a particularly high refractive index (say approximately 1.7), which makes it particularly suitable for building optical prisms. In general, it is not made with flint, but essentially with sand and lead.

  78. 78.

    Wollaston (1802), p. 378.

  79. 79.

    Wollaston (1802), p. 380.

  80. 80.

    Fraunhofer (1817).

  81. 81.

    Fraunhofer (1821).

  82. 82.

    Fraunhofer (1823).

  83. 83.

    Gore (1878), p. 179.

  84. 84.

    Herschel (1823).

  85. 85.

    Talbot (1826).

  86. 86.

    Foucault (1849b) [reproduced in: Foucault (1849a)].

  87. 87.

    Foucault (1849b), p. 19.

  88. 88.

    Ångström (1852).

  89. 89.

    Ångström (1855b).

  90. 90.

    Ångström (1855a).

  91. 91.

    Ångström (1855a), p. 337.

  92. 92.

    Kirchhoff (1859b).

  93. 93.

    Kirchhoff (1859a).

  94. 94.

    Kirchhoff (1860a).

  95. 95.

    Kirchhoff (1860b).

  96. 96.

    Kirchhoff and Bunsen (1860b).

  97. 97.

    Kirchhoff and Bunsen (1860a).

  98. 98.

    A comprehensive account of Secchi’s work can be found in: Chinnici (2021).

  99. 99.

    Pickering (1897b).

  100. 100.

    Pickering (1897a).

  101. 101.

    A comprehensive account can be found in: Robotti (1983).

  102. 102.

    Pickering and Fleming (1896).

  103. 103.

    Balmer (1885).

  104. 104.

    Balmer (1885), p. 81.

  105. 105.

    Balmer (1885), p. 80 [Balmer used the letter \({h}\) for this constant; however, we used the modern notation to avoid confusing it with Planck’s constant].

  106. 106.

    Balmer (1885), p. 84.

  107. 107.

    Rydberg (1889).

  108. 108.

    Rydberg (1890).

  109. 109.

    Rydberg (1890), p. 333.

  110. 110.

    Rydberg (1890), p. 333.

  111. 111.

    Paschen (1908).

  112. 112.

    Brackett (1922).

  113. 113.

    Pfund (1924).

  114. 114.

    Thomson (1903), p. 137.

  115. 115.

    Hittorf and Plücker (1865).

  116. 116.

    Hittorf and Plücker (1864a).

  117. 117.

    Hittorf and Plücker (1864b).

  118. 118.

    Hittorf (1869a), p. 8.

  119. 119.

    Hittorf (1869b), p. 223.

  120. 120.

    Varley (1871).

  121. 121.

    Varley (1871), pp. 239–240.

  122. 122.

    Goldstein (1876), p. 286 [two years later, the same expression was used also in a paper presented to the Berlin Academy, and published in 1880: Goldstein (1880), p. 834].

  123. 123.

    Thomson (1903), p. 138.

  124. 124.

    Thomson (1903), pp. 143–144.

  125. 125.

    Thomson (1903), pp. 138–139.

  126. 126.

    If it seems to you that a verb is missing in this sentence (and also a few words in the following lines), know that you are not alone (but Thomson wrote it exactly this way…).

  127. 127.

    Eilhard Ernst Gustav Wiedemann (Berlin, 1852–Erlangen, 1928) was a German physicist.

  128. 128.

    Gustav Jaumann (Caransebe, 1863–Ötztal, 1924) was an Austrian physicist.

  129. 129.

    Thomson (1903), pp. 189–190.

  130. 130.

    Crookes (1883a).

  131. 131.

    Crookes (1885).

  132. 132.

    Crookes (1883b).

  133. 133.

    Thomson (1903), p. 140.

  134. 134.

    Compton (1926), p. 6.

  135. 135.

    Röntgen (1896b).

  136. 136.

    A detailed account can be found in: Busch (2021).

  137. 137.

    Dam (1896), p. 413.

  138. 138.

    Röntgen (1896a).

  139. 139.

    Dam (1896), p. 403.

  140. 140.

    Anonymous (1896b).

  141. 141.

    Anonymous (1896c).

  142. 142.

    Colomina (2019), p. 192.

  143. 143.

    Anonymous (1896a).

  144. 144.

    Anonymous (1896a).

  145. 145.

    Wilhelm II was forced to abdicate on 9 November 1918, during the German Revolution of 1918–1919, which turned Germany from a monarchy into a democratic state: the Weimar Republic.

  146. 146.

    Arnin (1896).

  147. 147.

    Röntgen (1896c).

  148. 148.

    Coulier (1875b).

  149. 149.

    Coulier (1875a).

  150. 150.

    Today Chełmno, Poland.

  151. 151.

    Kiessling (1885).

  152. 152.

    Kiessling (1888).

  153. 153.

    Clark (1885).

  154. 154.

    Clark (1888).

  155. 155.

    Schröder and Wiederkehr (2000).

  156. 156.

    Helmholtz (1886).

  157. 157.

    Helmholtz (1887).

  158. 158.

    Aitken (1880b).

  159. 159.

    Aitken (1880c).

  160. 160.

    Aitken (1880a).

  161. 161.

    Aitken (1881a).

  162. 162.

    Aitken (1881b).

  163. 163.

    Aitken (1881c).

  164. 164.

    Aitken (1885).

  165. 165.

    Aitken (1886a).

  166. 166.

    Aitken (1886b).

  167. 167.

    Aitken (1888).

  168. 168.

    Aitken (1889).

  169. 169.

    Aitken (1898).

  170. 170.

    Wilson (1965), p. 194.

  171. 171.

    Wilson (1897b), p. 273.

  172. 172.

    Wilson (1965), p. 194.

  173. 173.

    Wilson (1897a).

  174. 174.

    Wilson (1897b).

  175. 175.

    Wilson (1965), pp. 196–197.

  176. 176.

    Wilson (1899a).

  177. 177.

    Wilson (1900).

  178. 178.

    Wilson (1965), p. 194.

  179. 179.

    Wilson (1899b).

  180. 180.

    Wilson (1899c).

  181. 181.

    Wilson (1965), p. 197.

  182. 182.

    Thomson and Rutherford (1896).

  183. 183.

    Wilson (1911).

  184. 184.

    Wilson (1912).

  185. 185.

    Wilson (1912), p. 278.

  186. 186.

    Siegbahn (1965), p. 172.

  187. 187.

    Wilson (1912), plates 6–9.

  188. 188.

    Rutherford (1911).

  189. 189.

    Wilson (1912), p. 284.

  190. 190.

    Wilson (1911), Fig. 1.

  191. 191.

    Wilson (1912), plate 6, Fig. 3.

  192. 192.

    Wilson (1912), plate 7, Fig. 2.

  193. 193.

    Wilson (1912), plate 8, Fig. 3.

  194. 194.

    Wilson (1912), p. 288.

  195. 195.

    Siegbahn (1965), p. 172.

  196. 196.

    Staley (2006).

  197. 197.

    Galison (1997).

References

  • Aitken J (1880a) On dust, fogs, and clouds. Nature 23(583):195–197

    Article  Google Scholar 

  • Aitken J (1880b) On dust, fogs, and clouds. Proc R Soc Edinb 11(108):14–18

    Google Scholar 

  • Aitken J (1880c) On dust, fogs, and clouds. Proc R Soc Edinb 11(108):122–126

    Google Scholar 

  • Aitken J (1881a) Dust and fogs. Nature 23(588):311–312

    Article  Google Scholar 

  • Aitken J (1881b) Dust, fogs, and clouds. Nature 23(591):384–385

    Article  Google Scholar 

  • Aitken J (1881c) On dust, fogs, and clouds. Van Nostrand’s Eng Mag 24(148):308–310

    Google Scholar 

  • Aitken J (1885) On dew. Proc R Soc Edinb 13(121):446–450

    Google Scholar 

  • Aitken J (1886a) On dew. Lond Edinb Dublin Philos Mag J Sci 22(135):206–212

    Article  Google Scholar 

  • Aitken J (1886b) On dew. Lond Edinb Dublin Philos Mag J Sci 22(137):363–368

    Google Scholar 

  • Aitken J (1888) On the number of dust particles in the atmosphere. Trans R Soc Edinb 35(1):1–19

    Article  Google Scholar 

  • Aitken J (1889) On improvements in the apparatus for counting the dust particles in the atmosphere. Proc R Soc Edinb 16(129):134–172

    Google Scholar 

  • Aitken J (1898) On some nuclei of cloudy condensation. Trans R Soc Edinb 39(3):15–25

    Google Scholar 

  • Ampère A-M (1814) Lettre de M. Ampère à M. le comte Berthollet sur la détermination des proportions dans lesquelles les corps se combinent d’après le nombre et la disposition respective des molécules dont les parties intégrantes sont composées. Ann Chimie 90(1):43–86

    Google Scholar 

  • Ångström AJ (1852) Optiska undersökningar. Kongliga Vetenskaps-Akademiens Handlingar 40:333–360

    Google Scholar 

  • Ångström AJ (1855a) Optical researches. Lond Edinb Dublin Philos Mag J Sci 9:327–342

    Article  Google Scholar 

  • Ångström AJ (1855b) Optische Untersuchungen. Ann Phys Chem 94:141–165

    Article  Google Scholar 

  • Anonymous (1896a) A sensational discovery. London Standard, 7 January 1896

    Google Scholar 

  • Anonymous (1896b) Eine sensationelle Entdeckung. Die Press, 5 January 1896, p 1

    Google Scholar 

  • Anonymous (1896c) Remarkable scientific discovery. Daily Chronicle, 6 January 1896

    Google Scholar 

  • Anonymous (1907a) Lord Kelvin dead, years a sufferer. The New York Times, 18 December 1907, p 4

    Google Scholar 

  • Anonymous (1907b) Lord Kelvin seriously ill. The New York Times, 13 December 1907, p 3

    Google Scholar 

  • Anonymous (1907c) Lord Kelvin very ill. The New York Times, 16 December 1907, p 1

    Google Scholar 

  • Anonymous (1907d) Will Bury Kelvin in Westminster Abbey. The New York Times, 20 December 1907, p 7

    Google Scholar 

  • Arnin F von (1896) Telegram from Emperor Wilhelm II to Röntgen. 11 January 1896. Archive of German Röntgen Museum, Remscheid

    Google Scholar 

  • Avogadro A (1811) Essai d’une manière de déterminer les masses relatives des molécules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons. J Phys 73:58–76

    Google Scholar 

  • Balmer JJ (1885) Notiz über die Spectrallinien des Wasserstoffs. Ann Phys 261(5):80–87

    Article  Google Scholar 

  • Boyle R (1661) The sceptical chymist: or chymico-physical doubts & paradoxes. J. Cadwell, London

    Google Scholar 

  • Boyle R (1664) Experiments and considerations touching colours, with observations on a diamond that shines in the dark. Henry Herringman, London

    Google Scholar 

  • Brackett FS (1922) Visible and infra-red radiation of hydrogen. Astrophys J 56:154–161

    Article  Google Scholar 

  • Brand JCD (1995) Lines of light: the sources of dispersive spectroscopy, 1800–1930. Gordon and Breach Publishers, London

    Google Scholar 

  • Busch U (2021) A new kind of rays: the discovery and exploration of X-rays. In: Busch U (ed) Wilhelm Conrad Röntgen: a shining life for science. Birkhäuser, Cham, pp 65–97

    Google Scholar 

  • Cannizzaro S (1858) Sunto di un corso di filosofia chimica. Pieraccini, Pisa

    Google Scholar 

  • Chinnici I (2021) Decoding the stars: a biography of Angelo Secchi, Jesuit and Scientist. Brill, Leiden

    Google Scholar 

  • Clark JE (1885) Prof. Kiessling’s investigations into the origin of the late sunset glows. Nature 32(835):637–638

    Google Scholar 

  • Clark JE (1888) Kiessling’s twilight phenomena. Science 12(298):191

    Article  Google Scholar 

  • Colomina B (2019) X-ray. AA Files 76:189–197

    Google Scholar 

  • Compton AH (1926) X-rays and electrons: an outline of recent X-ray theory. D. van Nostrand Company Inc., New York

    Google Scholar 

  • Coulier P-J (1875a) Note sur un nouvelle propriété de l’air. J Pharm Chim Paris 22:254–255

    Google Scholar 

  • Coulier P-J (1875b) Note sur une nouvelle propriété de l’air. J Pharm Chim Paris 22:165–173

    Google Scholar 

  • Crookes W (1883a) The Bakerian lecture: on radiant matter spectroscopy. A new method of spectrum analysis. Abstr Pap Commun R Soc Lond 35(224–226):262–271

    Google Scholar 

  • Crookes W (1883b) The Bakerian lecture: on radiant matter spectroscopy. The detection and wide distribution of Yttrium. Philos Trans R Soc Lond 174:891–918

    Google Scholar 

  • Crookes W (1885) On radiant matter spectroscopy. Part II. Samarium. Philos Trans R Soc Lond 174:691–723

    Google Scholar 

  • Dalton J (1805) Experimental inquiry into the proportion of the several gases or elastic fluids constituting the atmosphere (Read Nov. 12, 1802). Mem Lit Philos Soc Manch 1:244–258

    Google Scholar 

  • Dalton J (1806) Experimental inquiry into the proportion of the several gases or elastic fluids constituting the atmosphere. Lond Edinb Dublin Philos Mag J Sci 23(92):349–356

    Google Scholar 

  • Dalton J (1808) A new system of chemical philosophy, vol 1, part I. S. Russell, Manchester

    Google Scholar 

  • Dalton J (1810a) A new system of chemical philosophy, vol 1, part II. Russell & Allen, Manchester

    Google Scholar 

  • Dalton J (1810b) Dalton’s manuscript notes, Royal Institution, Lecture 18, 18 January 1810

    Google Scholar 

  • Dalton J (1827) A new system of chemical philosophy, vol 2, part I. S. Russell, Manchester

    Google Scholar 

  • Dam HJW (1896) The new marvel in photography. A visit to professor Röntgen at his laboratory in Würzburg. His own account of his great discovery. Interesting experiments with the cathode rays. Practical uses of the new photography. McClure’s Mag 6(5):403–414

    Google Scholar 

  • de Lavoisier A-L (1789) Traité élémentaire de chimie. Cuchet, Paris

    Google Scholar 

  • Dingle H (1963) A hundred years of spectroscopy. Br J Hist Sci 1(3):199–216

    Article  Google Scholar 

  • El-Bizri N (2006) Ibn al-Haytham or Alhazen. In: Meri JW (ed) Medieval Islamic civilization: an encyclopaedia, vol. II. Routledge, New York & London, pp 343–345

    Google Scholar 

  • El-Bizri N (2009) Ibn al Haytham et le problème de la couleur. Oriens Occidens 7:201–226

    Google Scholar 

  • Faraday M (1834) Experimental researches in electricity. Seventh Series. Philos Trans R Soc Lond 124(124):77–122

    Google Scholar 

  • Foucault L (1849a) Lumière électrique. L’institut, J Univ Sci 17:44–46

    Google Scholar 

  • Foucault L (1849b) Lumière électrique. Société Philomatique de Paris. Extraits des Procès-Verbaux de Séances 13:16–20

    Google Scholar 

  • Fraunhofer J (1817) Bestimmung des Brechungs – und des Farbenzerstreuungs – Vermögens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre. Denkschriften der Königlichen Akademie der Wissenschaften zu München 5:193–226

    Google Scholar 

  • Fraunhofer J (1821) Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben. Denkschriften Der Königlichen Akademie Der Wissenschaften Zu München 8:3–76

    Google Scholar 

  • Fraunhofer J (1823) Kurzer Bericht von den Resultaten neuerer Versuche über die Gesetze des Lichtes, und die Theorie derselben. Ann Phys 74(8):337–378

    Google Scholar 

  • Freund I (1904) The study of chemical composition. Cambridge University Press, Cambridge

    Google Scholar 

  • Galison P (1997) Image and logic. A material culture of microphysics. The University of Chicago Press, Chicago, pp 65–141

    Google Scholar 

  • Gassendi P (1649) Syntagma philosophiae Epicuri. Adrian Vlacq, Paris

    Google Scholar 

  • Gay-Lussac J (1809) Mémoire sur la combinaison des substances gazeuses, les unes avec les autres. Mém Soc D’Arcueil 2:207–234

    Google Scholar 

  • Goldstein E (1876) Vorläufige Mitteilungen über elektrische Entladungen in verdünnten Gasen. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, pp 279–295

    Google Scholar 

  • Goldstein E (1880) Über die Entladung der Electricität in verdünnten Gasen. Ann Phys 247(13):832–856

    Article  Google Scholar 

  • Gore G (1878) The art of scientific discovery: or, the general conditions and methods of research in physics and chemistry. Longmans, Green, and Co, London

    Google Scholar 

  • Grimaldi FM (1665) Physico-mathesis de lumine, coloribus et iride aliisque adnexis. Girolamo Bernia and Johann Zieger, Bologna

    Google Scholar 

  • Helmholtz H (1858) Über Integrale der hydrodynamischen Gleichungen, welche der Wirbelbewegung entsprechen. J Reine Angew Math 55:25–55

    Google Scholar 

  • Helmholtz R (1886) On vapour and mist. Lond Edinb Dublin Philos Mag J Sci 21(132):451–452

    Google Scholar 

  • Helmholtz R (1887) Versuche mit einem Dampfstrahl. Ann Phys 268(9):1–19

    Google Scholar 

  • Herschel JFW (1823) On the absorption of light by coloured media, and on the colours of the prismatic spectrum exhibited by certain flames; with an account of a ready mode of determining the absolute dispersive power of any medium, by direct experiment. Trans R Soc Edinb 9(2):445–460

    Google Scholar 

  • Hittorf JW (1869a) Über die Elektricitätsleitung der Gase. Ann Phys 212(1):1–31

    Article  Google Scholar 

  • Hittorf JW (1869b) Über die Elektricitätsleitung der Gase. Ann Phys 212(2):197–234

    Article  Google Scholar 

  • Hittorf JW, Plücker J (1864a) On the spectra of ignited gases and vapours with especial regard to the same elementary gaseous substance. Philos Trans R Soc Lond 155:1–29

    Google Scholar 

  • Hittorf JW, Plücker J (1864b) On the spectra of ignited gases and vapours with especial regard to the same elementary gaseous substance. Abstr Pap Commun R Soc Lond 13:153–157

    Google Scholar 

  • Hittorf JW, Plücker J (1865) On the spectra of ignited gases and vapours with especial regard to the same elementary gaseous substance. Philos Trans R Soc Lond 155:1–29

    Google Scholar 

  • Kiessling J (1885) Die Dämmerungserscheinungen in Jahre 1883 und ihre physikalische Erklärung. Leopold Voss, Hamburg & Leipzig

    Google Scholar 

  • Kiessling J (1888) Untersuchungen über Dämmerungserscheinungen zur Erklärung der nach dem Krakatau-Ausbruch beobachten atmosphärisch-optischen Störung. Leopold Voss, Hamburg & Berlin

    Google Scholar 

  • Kircher A (1646) Ars Magna Lucis et Umbrae. Ludovico Grignani, Rome

    Google Scholar 

  • Kirchhoff G (1859a) Ueber das Sonnenspektrum. Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg 1(7):251–255

    Google Scholar 

  • Kirchhoff G (1859b) Ueber die Fraunhofer’schen Linien. Monatsberichte der Königlichen Preussischen Akademie der Wissenschaften zu Berlin, pp 662–665

    Google Scholar 

  • Kirchhoff G (1860a) Ueber die Fraunhofer’schen Linien. Ann Phys 185(1):148–150

    Article  Google Scholar 

  • Kirchhoff G (1860b) Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann Phys 185(2):275–301

    Article  Google Scholar 

  • Kirchhoff G, Bunsen R (1860a) Chemical analysis by spectrum-observations. Lond Edinb Dublin Philos Mag J Sci 20(131):89–109

    Google Scholar 

  • Kirchhoff G, Bunsen R (1860b) Chemische analyse durch Spectralbeobachtungen. Ann Phys Chem 110(6):161–189

    Google Scholar 

  • Kirchner E (2015) Color theory and color order in medieval Islam: a review. Color Res Appl 40(1):5–16

    Article  Google Scholar 

  • Lindberg DC (1976) Theories of vision – from al-Kindi to Kepler. The University of Chicago Press, Chicago

    Google Scholar 

  • Marci JM (1648) Thaumantias. Liber de arcu coelesti deque colorum apparentium natura, ortu, et causis. Typis Academicis, Prague

    Google Scholar 

  • Mendeleev D (1869a) Versuche eines Systems der Elemente nach ihren Atomgewichten und chemischen Functionen. J Prakt Chem 106:251

    Google Scholar 

  • Mendeleev D (1869b) Соотношение свойств с атомным весом элементов (Relationship of properties of the elements to their atomic weights). Журнал Русского Химического Общества (j Russ Chem Soc) 1:60–77

    Google Scholar 

  • Newton I (1704) Opticks, or, a treatise of the reflections, refractions, inflections and colours of light. Samuel Smith and Benjamin Walford, London

    Google Scholar 

  • Newton I (1958) A letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; containing his New Theory about Light and Colors: sent by the Author to the Publisher from Cambridge, Febr. 6. 1671; in order to be communicated to the R. Society. In: Cohen IB, Schofield RE (eds) Isaac Newton’s papers and letters on natural philosophy and related documents. Harvard University Press, Cambridge, pp 47–70

    Google Scholar 

  • Paschen F (1908) Zur Kenntnis ultraroter Linienspektra. Ann Phys 332(13):537–570

    Article  Google Scholar 

  • Pfund AH (1924) The emission of nitrogen and hydrogen in infrared. J Opt Soc Am 9(3):193–196

    Article  Google Scholar 

  • Pickering EC (1897a) The spectrum of zeta Puppis. Astrophys J 5:92–94

    Google Scholar 

  • Pickering EC (1897b) Stars having peculiar spectra. New variable stars in Crux and Cygnus. Astron Nachr 142(6):87–90

    Google Scholar 

  • Pickering EC, Fleming W (1896) Stars having peculiar spectra. New variable stars in Crux and Cygnus. Astrophys J 4:369–370

    Google Scholar 

  • Proust JL (1794) Extrait d’un mémoire intitulé: Recherches sur le bleu de Prusse. J Phys Chim d’Histoire Nat Arts 45:334–341

    Google Scholar 

  • Richter JB (1792) Anfangsgründe der Stöchiometrie oder Messkunst chemischer Elemente. Johann Friedrich Korn, dem Aeltern, Breslau

    Google Scholar 

  • Richter JB (1792–1802) Über die neueren Gegenstände in der Chemie. Johann Friedrich Korn, dem Aeltern, Breslau, Hirschberg, Lissa

    Google Scholar 

  • Robotti N (1983) The spectrum of ζ Puppis and the historical evolution of empirical data. Hist Stud Phys Sci 14(1):123–145

    Google Scholar 

  • Röntgen WC (1896a) Eine neue Art von Strahlen. Physikalisch-medizinische Gesellschaft. Würzburg: Verlag der Stahel‘schen k. Hof, und Universitäts, Buch, und Kunsthandlung

    Google Scholar 

  • Röntgen WC (1896b) On a new kind of rays. Science 3(59):227–231

    Google Scholar 

  • Röntgen WC (1896c) On a new kind of rays. Nature 53(1369):274–276

    Google Scholar 

  • Rutherford E (1911) The scattering of α and β particles by matter and the structure of the atom. Lond Edinb Dublin Philos Mag J Sci 21(125):669–688

    Article  Google Scholar 

  • Rydberg JR (1889) Recherches sur la constitution des spectres d’émission des éléments chimiques. Kongliga Svenska Vetenskaps-Akademiens Handlingar 23(11):1–177

    Google Scholar 

  • Rydberg JR (1890) On the structure of the line-spectra of the chemical elements. Lond Edinb Dublin Philos Mag J Sci 29:331–337

    Article  Google Scholar 

  • Schröder W, Wiederkehr K-H (2000) Johann Kiessling, the Krakatoa event and the development of atmospheric optics after 1883. Notes Rec R Soc Lond 54(2):249–258

    Article  Google Scholar 

  • Siegbahn KMG (1965) Presentation Speech by Professor K. M. G. Siegbahn, member of the Nobel Committee for Physics of the Royal Swedish Academy of Sciences. Nobel Lectures, Physics 1922–1941. Elsevier Publishing Company, Amsterdam, pp 169–173

    Google Scholar 

  • Staley R (2006) Fog, dust and rising air: understanding cloud formation, cloud chambers, and the role of meteorology in Cambridge physics in the late 19th century. In: Fleming JR, Jankovic V, Coen D (eds) Intimate universality: local and global themes in the history of weather and climate. Science History Publications, New York, pp 93–113

    Google Scholar 

  • Tait PG (1876) Lectures on some recent advances in physical science. MacMillan & Co, London

    Google Scholar 

  • Tait PG (1877a) Note on the measure of beknottedness. Proc R Soc Edinb 9(97):289–298

    Google Scholar 

  • Tait PG (1877b) On knots. Proc R Soc Edinb 9(97):306–317

    Google Scholar 

  • Tait PG (1877c) On links. Proc R Soc Edinb 9(97):321–332

    Google Scholar 

  • Tait PG (1877d) Applications of the theorem that two closed plane curves intersect an even number of times. Proc R Soc Edinb 9(97):237–246

    Google Scholar 

  • Tait PG (1878a) Additional remarks on knots. Proc R Soc Edinb 9(98):405

    Article  Google Scholar 

  • Tait PG (1878b) On amphicheiral forms and their relations. Proc R Soc Edinb 9(98):391–392

    Google Scholar 

  • Tait PG (1878c) On knots. Part II. Trans R Soc Edinb 32(2):327–342

    Google Scholar 

  • Tait PG (1878d) On links. Proc R Soc Edinb 9(98):321–332

    Article  Google Scholar 

  • Tait PG (1878e) Preliminary note on a new method of investigating the properties of knots. Proc R Soc Edinb 9(98):403

    Article  Google Scholar 

  • Tait PG (1878f) Sevenfold knottiness. Proc R Soc Edinb 9(98):363–366

    Article  Google Scholar 

  • Tait PG (1878g) On knots. Part I. Trans R Soc Edinb 28(1):145–190

    Google Scholar 

  • Tait PG (1884) On knots. Part II. Proc R Soc Edinb 12:647

    Google Scholar 

  • Tait PG (1886) On knots. Part III. Trans R Soc Edinb 32(3):493–506

    Google Scholar 

  • Talbot WHF (1826) Some experiments on coloured flames. Edinb J Sci 5:77–81

    Google Scholar 

  • Thomson W (1867a) On vortex atoms. Proc R Soc Edinb 6:94–105

    Google Scholar 

  • Thomson W (1867b) On vortex atoms. Lond Edinb Dublin Philos Mag J Sci 34(227):15–24

    Google Scholar 

  • Thomson JJ (1882a) On the vibrations of a vortex ring, and the action of two vortex rings upon each other. Abstr Pap Commun R Soc Lond 33(216–219):145–147

    Google Scholar 

  • Thomson W (1882b) On the average pressure due to impulse of vortex rings on a solid. Proc R Soc Edinb 11:204

    Google Scholar 

  • Thomson JJ (1883) Treatise on the motion of vortex rings; an essay to which the Adams Prize was adjudged in 1882, in the University of Cambridge. Macmillan, London

    Google Scholar 

  • Thomson JJ (1884) Vortex rings. Science 3(57):289

    Google Scholar 

  • Thomson JJ (1903) The discharge of electricity through gases: lectures delivered on the occasion of the sesquicentennial of Princeton University. Charles Scribner’s sons, New York

    Google Scholar 

  • Thomson JJ, Rutherford E (1896) On the passage of electricity through gases exposed to Röntgen rays. Lond Edinb Dublin Philos Mag J Sci 42(258):392–407

    Article  Google Scholar 

  • Thomson SP (1910) The life of William Thomson-Baron Kelvin of Largs, vols I and II. MacMillan and Co., London

    Google Scholar 

  • Varley CF (1871) Some experiments on the discharge of electricity through rarefied media and the atmosphere. Proc R Soc Lond 19(123–129):236–242

    Google Scholar 

  • Watts I (1725) Logick, or the right use of reason in the enquiry after truth with a variety of rules to guard against error in the affairs of religion and human life, as well as in the sciences. John Clark and Richard Hett, London

    Google Scholar 

  • Wiedemann E (1913) Über optische Täuschungen nach Fahr al Din al Razi und Nasir al Din al Tusi. Sitzungsberichte Der Physikalischmedizinischen Sozietät in Erlangen 45:154–167

    Google Scholar 

  • Wilson CTR (1897a) Condensation of water vapour in the presence of dust-free air and other gases. Abstr Pap Commun R Soc Lond 61(369–377):240–242

    Google Scholar 

  • Wilson CTR (1897b) Condensation of water vapour in the presence of dust-free air and other gases. Philos Trans Math Phys Eng Sci 189:265–307

    Google Scholar 

  • Wilson CTR (1899a) On the comparative efficiency as condensation nuclei of positively and negatively charged ions. Abstr Pap Commun R Soc Lond 65:289–290

    Google Scholar 

  • Wilson CTR (1899b) On the condensation nuclei produced in gases by the action of Rontgen rays, uranium rays, ultra-violet light, and other agents. Abstr Pap Commun R Soc London 64(402–411):127–129

    Google Scholar 

  • Wilson CTR (1899c) On the condensation nuclei produced in gases by the action of Rontgen Rays, uranium rays, ultra-violet light, and other agents. Philos Trans Math Phys Eng Sci 192:403–453

    Google Scholar 

  • Wilson CTR (1900) On the comparative efficiency as condensation nuclei of positively and negatively charged ions. Philos Trans Math Phys Eng Sci 93:289–308

    Google Scholar 

  • Wilson CTR (1911) On a method of making visible the paths of ionising particles through a gas. Proc R Soc A Math Phys Eng Sci 85(578):285–288

    Google Scholar 

  • Wilson CTR (1912) On an expansion apparatus for making visible the tracks of ionising particles in gases and some results obtained by its use. Proc R Soc A Math Phys Eng Sci 87(595):277–292

    Google Scholar 

  • Wilson CTR (1965) On the cloud method of making visible ions and the tracks of ionizing particles. Nobel Lectures, Physics 1922–1941. Elsevier Publishing Company, Amsterdam, pp 194–214

    Google Scholar 

  • Wollaston WH (1802) A method of examining refractive and dispersive powers, by prismatic reflection. Philos Trans R Soc 92:365–380

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Giliberti or Luisa Lovisetti .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giliberti, M., Lovisetti, L. (2024). Atoms and Early Atomic Models. In: Old Quantum Theory and Early Quantum Mechanics. Challenges in Physics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-57934-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57934-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57933-2

  • Online ISBN: 978-3-031-57934-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics

Navigation