Linear Systems Under Gaussian White Noise Excitation: Exact Closed-Form Solutions

  • Chapter
  • First Online:
Path Integrals in Stochastic Engineering Dynamics

Abstract

In Chap. 3, the Wiener path integral formulation developed in Chap. 2 for first-order stochastic differential equations is extended to treat second-order stochastic differential equations modeling the dynamics of stochastically excited linear multi-degree-of-freedom structural systems. Specifically, considering Gaussian white noise excitation, it is shown that higher than second variations in the path integral functional expansion vanish. Thus, retaining only the first term (most probable path approximation) yields the exact response joint transition Gaussian probability density function. Two illustrative examples pertaining to a stochastically excited 2-degree-of-freedom linear oscillator and to a bending beam with Young’s modulus modeled as a stochastic field are considered to demonstrate the exact nature of the closed-form solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 136.95
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 187.19
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Caughey, T. K., and Stumpf, H. J. (1961). Transient response of a dynamic system under random excitation. Journal of Applied Mechanics, 28, 563–566.

    Article  ADS  Google Scholar 

  • Chaichian, M., and Demichev, A. (2001). Path integrals in physics, Vol. I: Stochastic processes and quantum mechanics. Institute of Physics Publishing.

    Book  Google Scholar 

  • Colet, P., Wio, H. S., and San Miguel, M. (1989). Colored noise: A perspective from a path-integral formalism. Physical Review A, 39, 6094.

    Article  ADS  Google Scholar 

  • Conte, J. P., and Peng, B.-F. (1996). An explicit closed-form solution for linear systems subjected to nonstationary random excitation. Probabilistic Engineering Mechanics, 11, 37–50.

    Article  Google Scholar 

  • Donoso, J. M., Salgado, J. J., and Soler, M. (1999). Short-time propagators for nonlinear Fokker-Planck equations. Journal of Physics A: Mathematical and General, 32, 3681.

    Article  ADS  MathSciNet  Google Scholar 

  • Drozdov, A. N., and Talkner, P. (1998). Path integrals for Fokker–Planck dynamics with singular diffusion: Accurate factorization for the time evolution operator. The Journal of Chemical Physics, 109, 2080–2091.

    Article  ADS  Google Scholar 

  • Einchcomb, S. J. B., and McKane, A. J. (1995). Use of Hamiltonian mechanics in systems driven by colored noise. Physical Review E, 51, 2974.

    Article  ADS  Google Scholar 

  • Ewing, G. M. (1985). Calculus of variations with applications. Dover Publications.

    Google Scholar 

  • Gelfand, I. M., and Fomin, S. V. (1963). Calculus of variations. Prentice Hall.

    Google Scholar 

  • Grigoriu, M. (1997). Local solutions of laplace, heat, and other equations by Ito processes. Journal of Engineering Mechanics, 123, 823–829.

    Article  Google Scholar 

  • Grigoriu, M., and Papoulia, K. D. (2005). Effective conductivity by a probability-based local method. Journal of Applied Physics, 98, 033706.

    Article  ADS  Google Scholar 

  • Hänggi, P. (1989). Path integral solutions for non-Markovian processes. Zeitschrift fĂĽr Physik B Condensed Matter, 75, 275–281.

    Article  ADS  MathSciNet  Google Scholar 

  • Kougioumtzoglou, I. A. (2017). A Wiener path integral solution treatment and effective material properties of a class of one-dimensional stochastic mechanics problems. Journal of Engineering Mechanics, 143, 04017014.

    Article  Google Scholar 

  • Lu, T.-T., and Shiou, S.-H. (2002). Inverses of 2 \(\times \) 2 block matrices. Computers and Mathematics with Applications, 43, 119–129.

    Article  MathSciNet  Google Scholar 

  • Machlup, S., and Onsager, L. (1953). Fluctuations and irreversible process. II. Systems with kinetic energy. Physical Review, 91, 1512.

    Google Scholar 

  • McKane, A. J., Luckock, H. C., and Bray, A. J. (1990). Path integrals and non-Markov processes. I. General formalism. Physical Review A, 41, 644.

    Google Scholar 

  • Newman, T. J., Bray, A. J., and McKane, A. J. (1990). Inertial effects on the escape rate of a particle driven by colored noise: An instanton approach. Journal of Statistical Physics, 59, 357–369.

    Article  ADS  Google Scholar 

  • Psaros, A. F., Petromichelakis, I., and Kougioumtzoglou, I. A. (2019). Wiener path integrals and multi-dimensional global bases for non-stationary stochastic response determination of structural systems. Mechanical Systems and Signal Processing, 128, 551–571.

    Article  ADS  Google Scholar 

  • Psaros, A. F., Zhao, Y., and Kougioumtzoglou, I. A. (2020). An exact closed-form solution for linear multi-degree-of-freedom systems under Gaussian white noise via the Wiener path integral technique. Probabilistic Engineering Mechanics 60, 103040.

    Article  Google Scholar 

  • Risken, H. (1984). The Fokker-Planck equation: Methods of solution and applications. Springer.

    Book  Google Scholar 

  • Roberts, J. B., and Spanos, P. D. (1990, 2003). Random vibration and statistical linearization. Wiley (1990); and Dover Publications (2003).

    Google Scholar 

  • Seber, G. A. (2008). A matrix handbook for statisticians (Vol. 15). Wiley.

    Google Scholar 

  • Shinozuka, M. (1987). Structural response variability. Journal of Engineering Mechanics, 113, 825–842.

    Article  Google Scholar 

  • Silvester, J. R. (2000). Determinants of block matrices. The Mathematical Gazette, 84, 460–467.

    Article  Google Scholar 

  • Wio, H. S. (2013). Path integrals for stochastic processes: An introduction. World Scientific.

    Book  Google Scholar 

  • Wio, H. S., Colet, P., San Miguel, M., Pesquera, L., and Rodriguez, M. A. (1989). Path-integral formulation for stochastic processes driven by colored noise. Physical Review A, 40, 7312.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kougioumtzoglou, I.A., Psaros, A.F., Spanos, P.D. (2024). Linear Systems Under Gaussian White Noise Excitation: Exact Closed-Form Solutions. In: Path Integrals in Stochastic Engineering Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-031-57863-2_3

Download citation

Publish with us

Policies and ethics

Navigation