Exploring Technology Evolution Pathways Based on Link Prediction on Multiplex Network: Illustrated as CRISPR

  • Conference paper
  • First Online:
Wisdom, Well-Being, Win-Win (iConference 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14597))

Included in the following conference series:

  • 208 Accesses

Abstract

Exploring technology evolution pathways is essential since one can capture the best opportunity in a particular domain. Researchers attempt to exploit the critical trajectory from a historical perspective; however, only some steps forward to forecasting the future direction. This study proposes a new research framework to make reasonable predictions. Based on patents retrieved from DII, we construct a multiplex network consisting of co-citation and semantic layers. Specifically, we utilize the citation relationships between patents and extract technology topics with the Combined Topic Model(CTM), a powerful topic recognition tool. Subsequently, we employ the link prediction method to obtain future links and assemble them into a new co-citation network. We get credible predictions of future evolution trends by analyzing topics. To validate our framework, we take CRISPR, an emerging technology in gene editing, as a case study. Our experiments show that link prediction performs well in detecting future co-citation links, and the semantic layer further improves the prediction accuracy. We finally summarize seven potential directions and validate our predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dosi, G.: Technological paradigms and technological trajectories: a suggested interpretation of the determinants and directions of technical change. Res. Policy 11(3), 147–162 (1982). https://doi.org/10.1016/0048-7333(82)90016-6

    Article  Google Scholar 

  2. Huang, Y., et al.: A hybrid method to trace technology evolution pathways: a case study of 3D printing. Scientometrics 111(1), 185–204 (2017). https://doi.org/10.1007/s11192-017-2271-8

    Article  Google Scholar 

  3. Huang, Y., Zhu, F., Porter, A.L., Zhang, Y., Zhu, D., Guo, Y.: Exploring technology evolution pathways to facilitate technology management: from a technology life cycle perspective. IEEE Trans. Eng. Manag. 68(5), 1347–1359 (2021). https://doi.org/10.1109/TEM.2020.2966171

    Article  Google Scholar 

  4. Chen, L., Xu, S., Zhu, L., Zhang, J., Xu, H., Yang, G.: A semantic main path analysis method to identify multiple developmental trajectories. J. Informet. 16(2), 101281 (2022). https://doi.org/10.1016/j.joi.2022.101281

    Article  Google Scholar 

  5. Hummon, N.P., Dereian, P.: Connectivity in a citation network: the development of DNA theory. Social Netw. 11(1), 39–63 (1989)

    Article  Google Scholar 

  6. Batagelj, V.: Efficient algorithms for citation network analysis (2003)

    Google Scholar 

  7. Liu, H., Chen, Z., Tang, J., Zhou, Y., Liu, S.: Map** the technology evolution path: a novel model for dynamic topic detection and tracking. Scientometrics 125(3), 2043–2090 (2020). https://doi.org/10.1007/s11192-020-03700-5

    Article  Google Scholar 

  8. Zhang, Y., Xu, S., Yang, Y., Huang, Y.: Topic evolution analysis based on optimized combined topic model: illustrated as crispr technology. In: Sserwanga, I., et al. (eds.) Information for a Better World: Normality, Virtuality, Physicality, Inclusivity, vol. 13972, pp. 47–64. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28032-0_4

  9. Gao, Q., Huang, X., Dong, K., Liang, Z., Wu, J.: Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec. Scientometrics 127(3), 1543–1563 (2022). https://doi.org/10.1007/s11192-022-04275-z

    Article  Google Scholar 

  10. Huang, L., Chen, X., Zhang, Y., Wang, C., Cao, X., Liu, J.: Identification of topic evolution: network analytics with piecewise linear representation and word embedding. Scientometrics 127(9), 5353–5383 (2022). https://doi.org/10.1007/s11192-022-04273-1

    Article  Google Scholar 

  11. Puccetti, G., Giordano, V., Spada, I., Chiarello, F., Fantoni, G.: Technology identification from patent texts: a novel named entity recognition method. Technol. Forecast. Social Change 186, 122160 (2023). https://doi.org/10.1016/j.techfore.2022.122160. https://www.sciencedirect.com/science/article/pii/S0040162522006813

  12. Wei, T., Jiang, T., Feng, D., **ong, J.: Exploring the evolution of core technologies in agricultural machinery: a patent-based semantic mining analysis. Electronics 12(20) (2023). https://doi.org/10.3390/electronics12204277. https://www.mdpi.com/2079-9292/12/20/4277

  13. Hung, S.C., Liu, J.S., Lu, L.Y.Y., Tseng, Y.C.: Technological change in lithium iron phosphate battery: the key-route main path analysis. Scientometrics 100(1), 97–120 (2014). https://doi.org/10.1007/s11192-014-1276-9

    Article  Google Scholar 

  14. Li, M., Xu, X.: Tracing technological evolution and trajectory of biomass power generation: a patent-based analysis. Environ. Sci. Pollut. Res. 30(12), 32814–32826 (2022). https://doi.org/10.1007/s11356-022-24339-0

    Article  Google Scholar 

  15. Smojver, V., Štorga, M., Zovak, G.: Exploring knowledge flow within a technology domain by conducting a dynamic analysis of a patent co-citation network. J. Knowl. Manag. 25(2), 433–453 (2021). https://doi.org/10.1108/JKM-01-2020-0079

    Article  Google Scholar 

  16. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A 390(6), 1150–1170 (2011). https://doi.org/10.1016/j.physa.2010.11.027

    Article  Google Scholar 

  17. Zhou, T.: Progresses and challenges in link prediction. iScience 24(11), 103217 (2021). https://doi.org/10.1016/j.isci.2021.103217

  18. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inf. Sci. 58(1), 1–38 (2014). https://doi.org/10.1007/s11432-014-5237-y

    Article  Google Scholar 

  19. Wu, H., Song, C., Ge, Y., Ge, T.: Link prediction on complex networks: an experimental survey. Data Sci. Eng. 7(3), 253–278 (2022). https://doi.org/10.1007/s41019-022-00188-2

    Article  Google Scholar 

  20. Shibata, N., Kajikawa, Y., Sakata, I.: Link prediction in citation networks. J. Am. Soc. Inf. Sci. Technol. 63(1), 78–85 (2012). https://doi.org/10.1002/asi.21664

    Article  Google Scholar 

  21. Cardillo, A., et al.: Emergence of network features from multiplexity. Sci. Rep. 3(1), 1344 (2013). https://doi.org/10.1038/srep01344

    Article  Google Scholar 

  22. Granell, C., Gómez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111(12), 128701 (2013). https://doi.org/10.1103/PhysRevLett.111.128701

    Article  Google Scholar 

  23. Yao, Y., et al.: Link prediction via layer relevance of multiplex networks. Int. J. Mod. Phys. C 28(8), 1750101 (2017). https://doi.org/10.1142/s0129183117501017

    Article  Google Scholar 

  24. Shan, N., Li, L., Zhang, Y., Bai, S., Chen, X.: Supervised link prediction in multiplex networks. Knowl.-Based Syst. 203, 106168 (2020). https://doi.org/10.1016/j.knosys.2020.106168

  25. Bai, S., Zhang, Y., Li, L., Shan, N., Chen, X.: Effective link prediction in multiplex networks: a topsis method. Expert Syst. Appl. 177, 114973 (2021). https://doi.org/10.1016/j.eswa.2021.114973

  26. Yoon, B., Kim, S., Kim, S., Seol, H.: Doc2vec-based link prediction approach using SAO structures: application to patent network. Scientometrics 127(9), 5385–5414 (2022). https://doi.org/10.1007/s11192-021-04187-4

    Article  Google Scholar 

  27. Vital, A., Amancio, D.R.: A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks. Scientometrics 127(10), 6011–6028 (2022). https://doi.org/10.1007/s11192-022-04484-6

    Article  Google Scholar 

  28. Song, B., Suh, Y.: Identifying convergence fields and technologies for industrial safety: LDA-based network analysis. Technol. Forecast. Soc. Chang. 138, 115–126 (2019). https://doi.org/10.1016/j.techfore.2018.08.013

    Article  Google Scholar 

  29. Qiu, Z., Wang, Z.: Technology forecasting based on semantic and citation analysis of patents: a case of robotics domain. IEEE Trans. Eng. Manag. 69(4), 1216–1236 (2022). https://doi.org/10.1109/TEM.2020.2978849

    Article  Google Scholar 

  30. Liu, Y., Chen, M.: The knowledge structure and development trend in artificial intelligence based on latent feature topic model. IEEE Trans. Eng. Manag. 1–12 (2023). https://doi.org/10.1109/TEM.2022.3232178

  31. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Google Scholar 

  32. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101(476), 1566–1581 (2006). https://doi.org/10.1198/016214506000000302

    Article  MathSciNet  Google Scholar 

  33. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  34. Bianchi, F., Terragni, S., Hovy, D.: Pre-training is a hot topic: contextualized document embeddings improve topic coherence (2021)

    Google Scholar 

  35. Srivastava, A., Sutton, C.: Autoencoding variational inference for topic models (2017)

    Google Scholar 

  36. OuYang, K., Weng, C.S.: A new comprehensive patent analysis approach for new product design in mechanical engineering. Technol. Forecast. Soc. Chang. 78(7), 1183–1199 (2011). https://doi.org/10.1016/j.techfore.2011.02.012

    Article  Google Scholar 

  37. Filippin, F.: Do main paths reflect technological trajectories? applying main path analysis to the semiconductor manufacturing industry. Scientometrics 126(8), 6443–6477 (2021). https://doi.org/10.1007/s11192-021-04023-9

    Article  Google Scholar 

  38. Röder, M., Both, A., Hinneburg, A.: Exploring the space of topic coherence measures. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, pp. 399–408. ACM, Shanghai (2015). https://doi.org/10.1145/2684822.2685324

  39. Boccaletti, S., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014). https://doi.org/10.1016/j.physrep.2014.07.001

    Article  MathSciNet  Google Scholar 

  40. Huang, L., Chen, X., Ni, X., Liu, J., Cao, X., Wang, C.: Tracking the dynamics of co-word networks for emerging topic identification. Technol. Forecast. Soc. Chang. 170, 120944 (2021). https://doi.org/10.1016/j.techfore.2021.120944

    Article  Google Scholar 

  41. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A.: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in escherichia coli, and identification of the gene product. J. Bacteriol. 169(12), 5429–5433 (1987). https://doi.org/10.1128/jb.169.12.5429-5433.1987

    Article  Google Scholar 

  42. Mojica, F.J.M., Juez, G., Rodriguez-Valera, F.: Transcription at different salinities of haloferax mediterranei sequences adjacent to partially modified psti sites. Mol. Microbiol. 9(3), 613–621 (1993). https://doi.org/10.1111/j.1365-2958.1993.tb01721.x

    Article  Google Scholar 

  43. **ek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E.: A programmable dual-rna–guided dna endonuclease in adaptive bacterial immunity. Science 337(6096), 816–821 (2012). https://doi.org/10.1126/science.1225829

    Article  Google Scholar 

  44. Cong, L.: Multiplex genome engineering using crispr/cas systems. Science 339(6121), 819–823 (2013). https://doi.org/10.1126/science.1231143

    Article  Google Scholar 

  45. Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthcare 3(1), 1–23 (2022). https://doi.org/10.1145/3458754

    Article  Google Scholar 

  46. Zhang, X., Mei, L., Gao, Y., Hao, G., Song, B.: Web tools support predicting protein-nucleic acid complexes stability with affinity changes. WIREs RNA 14(5) (2023). https://doi.org/10.1002/wrna.1781

  47. Pickar-Oliver, A., Gersbach, C.A.: The next generation of crispr-cas technologies and applications. Nat. Rev. Molecu. Cell Biol. 20(8), 490–507 (2019). https://doi.org/10.1038/s41580-019-0131-5

    Article  Google Scholar 

  48. Li, T., et al.: Crispr/cas9 therapeutics: progress and prospects. Signal Transd. Target. Therapy 8(1) (2023). https://doi.org/10.1038/s41392-023-01309-7

Download references

Acknowledgments

We appreciate the anonymous reviewers’ careful examination of the manuscript and helpful comments. We appreciate Yihe Zhu, Yuanda Zhang, and Elysia Valentina for their help. We acknowledge support from the National Natural Science Foundation of China (Grant 72004169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Z., Tang, J., Yang, J., Huang, Y. (2024). Exploring Technology Evolution Pathways Based on Link Prediction on Multiplex Network: Illustrated as CRISPR. In: Sserwanga, I., et al. Wisdom, Well-Being, Win-Win. iConference 2024. Lecture Notes in Computer Science, vol 14597. Springer, Cham. https://doi.org/10.1007/978-3-031-57860-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57860-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57859-5

  • Online ISBN: 978-3-031-57860-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation