A Distributed Platform for Cycle Detection and Analysis in Cyber-Physical Systems

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2024)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 200))

  • 257 Accesses

Abstract

This paper presents a distributed platform that collects and processes data streams from Industrial IoT/Cyber-Physical Systems. We demonstrate the design and performance of our platform with an emphasis on accuracy and scalability. We validate our platform using three use cases: production cycle detection, cycle analysis, and anomaly detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 235.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Advanced computational statistics for planning and tracking production environments.

  2. 2.

    https://www.iiconsortium.org/.

  3. 3.

    https://www.iiconsortium.org/patterns/.

  4. 4.

    https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/iot-predictive-maintenance.

  5. 5.

    https://scikit-learn.org/stable/modules/classes.html.

  6. 6.

    https://web.eece.maine.edu/~vweaver/projects/rapl/.

  7. 7.

    https://numpy.org/.

References

  1. Khan, W.Z., Rehman, M.H., Zangoti, H.M., Afzal, M.K., Armi, N., Salah, K.: Industrial internet of things: recent advances, enabling technologies and open challenges. Comput. Electr. Eng. 81, 106522 (2020)

    Article  Google Scholar 

  2. Lydon, B.: RAMI 4.0 reference architectural model for Industrie 4.0. InTech, April 2019

    Google Scholar 

  3. Reference architecture model Industrie 4.0 (RAMI4.0). Technical report DIN SPEC 91345:2016-04, Deutsches Institut fur Normung E.V. (DIN) (2016)

    Google Scholar 

  4. The industrial internet reference architecture. Technical report, Industry IoT Consortium (2022)

    Google Scholar 

  5. Cosner, M., Garcia, A.B.: Azure IoT reference architecture. White paper, Microsoft (2023)

    Google Scholar 

  6. Sodabathina, R., Shan, J., Ulloa, M.: Building event-driven architectures with IoT sensor data. AWS architecture blog, Amazon Web Services (2022)

    Google Scholar 

  7. Eclipse IoT Working Group. The three software stacks required for IoT architectures. White paper (2016)

    Google Scholar 

  8. Keith Mobley, R.: Introduction to Predictive Maintenance. Plant Engineering, 2nd edn. Elsevier Science & Technology, Oxford (2002). Description based on publisher supplied metadata and other sources

    Google Scholar 

  9. Passlick, J., Dreyer, S., Olivotti, D., Grützner, L., Eilers, D., Breitner, M.H.: Predictive maintenance as an internet of things enabled business model: a taxonomy. Electron. Mark. 31(1), 67–87 (2020)

    Article  Google Scholar 

  10. Carvalho, T.P., Soares, F.A.A.M.N., Vita, R., Francisco, R.P., Basto, J.P., Alcalá, S.G.S.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019)

    Google Scholar 

  11. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J.: Machine learning approach for predictive maintenance in industry 4.0. In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), July 2018. IEEE (2018)

    Google Scholar 

  12. Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., Elger, G.: Predictive maintenance enabled by machine learning: use cases and challenges in the automotive industry. Reliab. Eng. Syst. Saf. 215, 107864 (2021)

    Article  Google Scholar 

  13. Ayvaz, S., Alpay, K.: Predictive maintenance system for production lines in manufacturing: a machine learning approach using IoT data in real-time. Exp. Syst. Appl. 173, 114598 (2021)

    Article  Google Scholar 

  14. Iuhasz, G., Panica, S., Duma, A.: Cycle detection and clustering for cyber physical systems. In: Barolli, L. (eds.) Advanced Information Networking and Applications, AINA 2023. LNNS, vol. 655, pp. 100–114. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-28694-0_10

Download references

Acknowledgement

The Romania Competitiveness Operational Programme partially supports this paper under project number SMIS 120725 - SCAMP-ML (Advanced computational statistics for planning and tracking production environments) and UEFISCDI COCO research project PN III-P4-ID-PCE-2020-0407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Iuhasz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iuhasz, G., Panica, S., Fortis, F., Duma, A. (2024). A Distributed Platform for Cycle Detection and Analysis in Cyber-Physical Systems. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-031-57853-3_37

Download citation

Publish with us

Policies and ethics

Navigation