Two-Dimensional (2D) Perovskite and Its Applications

  • Chapter
  • First Online:
Perovskite Optoelectronic Devices

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 165 Accesses

Abstract

Two-dimensional (2D) perovskites are the new engine to drive the legacy of the perovskite materials. This has diversified the relevance of the perovskite materials and has pushed the utility boundary of the materials from the limited applicability of 3-dimensional perovskites. 2D perovskites are being used independently and also in tandem with three-dimensional perovskites, which has broadened its scope of acceptance in terms of performance and stability. 2D perovskites provide adequate band alignment, remarkable carrier mobility, low exciton binding energies, and magnificent absorption coefficients, making it an exciting material to explore. This chapter has discussed the structural properties of different types of 2D perovskites. Further, various routes of synthesizing of the 2D perovskites have also been discussed. In the later part, organic spacer cations, mainly monoammonium and diammonium cations, have been explored, which play an important role in defining properties and application of the 2D perovskites. Lastly, diverse applications of the 2D perovskites in light-emitting diodes (LEDs), lasers, photodetectors, photovoltaics, and photocatalysis have also been discussed. The chapter draws insight from prevailing developments in the field of 2D perovskites to contribute to future perspectives on develo** 2D perovskites as a new class of emerging materials.

Md Aslam Uddin and Prashant Kumar contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uddin, M.A., Calabro, R.L., Kim, D.Y., Graham, K.R.: Halide exchange and surface modification of metal halide perovskite nanocrystals with alkyltrichlorosilanes. Nanoscale 10, 16919–16927 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. Nedelcu, G., et al.: Fast anion-exchange in highly-luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Uddin, M.A., Glover, J.D., Park, S.M., Pham, J.T., Graham, K.R.: Growth of highly stable and luminescent CsPbX3 (X = Cl, Br, and I) nanoplates via ligand mediated anion exchange of CsPbCl3 nanocubes with AlX3. Chem. Mater. 32, 5217–5225 (2020)

    Article  CAS  Google Scholar 

  4. Yin, W.J., Shi, T., Yan, Y.: Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. **ng, G., et al.: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 1979(6960), 498–500 (2013)

    Google Scholar 

  6. Stranks, S.D., et al.: Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 1979(342), 341–344 (2013)

    Article  Google Scholar 

  7. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. Uddin, M.A., et al.: Blading of conformal electron-transport layers in p–i–n perovskite solar cells. Adv. Mater. 34, 2202954 (2022)

    Article  CAS  Google Scholar 

  9. Kang, J., Wang, L.W.: High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. Mahapatra, A., Kumar, S., Kumar, P., Pradhan, B.: Recent progress in perovskite solar cells: challenges from efficiency to stability. Mater. Today Chem. 23, 100686 (2022). https://doi.org/10.1016/j.mtchem.2021.100686

    Article  CAS  Google Scholar 

  11. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 1979(338), 643–647 (2012)

    Article  Google Scholar 

  12. Tan, Z.-K., et al.: Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, Y., et al.: Self-powered perovskite photon-counting detectors. Nature 616, 712–718 (2023)

    Article  CAS  PubMed  Google Scholar 

  14. NREL. Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. NREL. Accessed 5 Aug 2023 (2023)

  15. Kim, H.S., et al.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1–7 (2012)

    Article  Google Scholar 

  16. Conings, B., et al.: Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1–8 (2015)

    Article  Google Scholar 

  17. Schall, J.W., et al.: Accelerated stress testing of perovskite photovoltaic modules: differentiating degradation modes with electroluminescence imaging. Solar RRL 7, 2300229 (2023)

    Article  Google Scholar 

  18. Li, Y.-T., et al.: Review on organic–inorganic two-dimensional perovskite-based optoelectronic devices. ACS Appl. Electron. Mater. 4, 547–567 (2022)

    Article  CAS  Google Scholar 

  19. Yuan, H., et al.: Degradation of methylammonium lead iodide perovskite structures through light and electron beam driven ion migration. J. Phys. Chem. Lett. 7, 561–566 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Juarez-Perez, E.J., Ono, L.K., Uriarte, I., Cocinero, E.J., Qi, Y.: Degradation mechanism and relative stability of methylammonium halide based perovskites analyzed on the basis of acid-base theory. ACS Appl. Mater. Interfaces 11, 12586–12593 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Ball, J.M., Petrozza, A.: Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016)

    Article  CAS  Google Scholar 

  22. Wang, S., Jiang, Y., Juarez-Perez, E.J., Ono, L.K., Qi, Y.: Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2, 2009–2014 (2017)

    Google Scholar 

  23. Correa-Baena, J.P., et al.: Promises and challenges of perovskite solar cells. Science 1979(358), 739–744 (2017)

    Article  Google Scholar 

  24. Zhang, Y., et al.: Enhancing the grain size of organic halide perovskites by sulfonate-carbon nanotube incorporation in high performance perovskite solar cells. Chem. Commun. 52, 5674–5677 (2016)

    Article  CAS  Google Scholar 

  25. Kim, M., et al.: Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019)

    Article  CAS  Google Scholar 

  26. Chu, Z., et al.: Impact of grain boundaries on efficiency and stability of organic–inorganic trihalide perovskites. Nat. Commun. 8, 2230 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li, H., et al.: Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci. 6, 1901241 (2019)

    Article  CAS  Google Scholar 

  28. Jeon, N.J., et al.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. Lee, J.W., et al.: Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015)

    Article  Google Scholar 

  30. Jiang, Q., et al.: Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022)

    Article  CAS  PubMed  Google Scholar 

  31. Bai, S., et al.: Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. Lu, J., et al.: Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy Environ. Sci. 11, 1880–1889 (2018)

    Article  CAS  Google Scholar 

  33. Mohammadi, M., et al.: Encapsulation strategies for highly stable perovskite solar cells under severe stress testing: damp heat, freezing, and outdoor illumination conditions. ACS Appl. Mater. Interfaces 13, 45455–45464 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Li, J., et al.: Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J. Power. Sources 485, 229313 (2021)

    Article  CAS  Google Scholar 

  35. Yang, S., et al.: Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. Krishna, A., Gottis, S., Nazeeruddin, M.K., Sauvage, F.: Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells? Adv. Funct. Mater. 29, 1–20 (2019)

    Article  Google Scholar 

  37. Koh, T.M., et al.: Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. J Mater Chem A Mater 6, 2122–2128 (2018)

    Article  CAS  Google Scholar 

  38. Chakkamalayath, J., Hiott, N., Kamat, P.V.: How stable is the 2D/3D interface of metal halide perovskite under light and heat? ACS Energy Lett. 8, 169–171 (2023)

    Article  CAS  Google Scholar 

  39. Gu, H., et al.: Design optimization of bifacial perovskite minimodules for improved efficiency and stability. Nat. Energy 8, 675–684 (2023)

    Article  CAS  Google Scholar 

  40. Fiorentino, F., Albaqami, M.D., Poli, I., Petrozza, A.: Thermal- and light-induced evolution of the 2D/3D interface in lead-halide perovskite films. ACS Appl. Mater. Interfaces 14, 34180–34188 (2022)

    Article  CAS  PubMed  Google Scholar 

  41. Thote, A., et al.: Stable and reproducible 2D/3D formamidinium-lead-iodide perovskite solar cells. ACS Appl. Energy Mater. 2, 2486–2493 (2019)

    Article  CAS  Google Scholar 

  42. Ma, C., et al.: 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 8, 18309–18314 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y., et al.: Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, 2543 (2019)

    Article  Google Scholar 

  44. Luo, L., et al.: Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023)

    Article  CAS  Google Scholar 

  45. Kim, H., et al.: Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 9, 1902740 (2019)

    Article  CAS  Google Scholar 

  46. Liu, Y., et al.: Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. 132, 15818–15824 (2020)

    Article  Google Scholar 

  47. Jiang, Q., et al.: Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019)

    Article  CAS  Google Scholar 

  48. Lee, D.S., et al.: Passivation of grain boundaries by phenethylammonium in formamidinium–methylammonium lead halide perovskite solar cells. ACS Energy Lett. 3, 647–654 (2018)

    Article  CAS  Google Scholar 

  49. Zhang, F., et al.: Growth of amorphous passivation layer using phenethylammonium iodide for high-performance inverted perovskite solar cells. Solar RRL 4, 1900243 (2020)

    Article  CAS  Google Scholar 

  50. Pegu, M., Haris, M.P.U., Kazim, S., Ahmad, S.: Understanding and harnessing the potential of layered perovskite-based absorbers for solar cells. Emergent Mater. 3, 751–778 (2020)

    Article  CAS  Google Scholar 

  51. Leung, T.L., et al.: Stability of 2D and quasi-2D perovskite materials and devices. Commun. Mater. 3, 1–10 (2022)

    Article  Google Scholar 

  52. Mao, L., Stoumpos, C.C., Kanatzidis, M.G.: Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. Yang, J., Siempelkamp, B.D., Liu, D., Kelly, T.L.: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. Kore, B.P., Zhang, W., Hoogendoorn, B.W., Safdari, M., Gardner, J.M.: Moisture tolerant solar cells by encapsulating 3D perovskite with long-chain alkylammonium cation-based 2D perovskite. Commun Mater. 2, 100 (2021)

    Article  CAS  Google Scholar 

  55. Shi, E., et al.: Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. Wang, K., et al.: Distinct conducting layer edge states in two-dimensional (2D) halide perovskite. Sci. Adv. 5, 1–11 (2019)

    Article  Google Scholar 

  57. Haque, M.A., Troughton, J., Baran, D.: Processing-performance evolution of perovskite solar cells: from large grain polycrystalline films to single crystals. Adv. Energy Mater. 10, 1–20 (2020)

    Article  Google Scholar 

  58. Kim, J., et al.: Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden-Popper perovskite photodetectors. Nanotechnology 32, 185203 (2021)

    Article  CAS  PubMed  Google Scholar 

  59. Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  CAS  PubMed  Google Scholar 

  60. Li, L., et al.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)

    Article  CAS  PubMed  Google Scholar 

  61. Desai, S.B., et al.: MoS2 transistors with 1-nanometer gate lengths. Science 354, 99 (2016)

    Article  CAS  PubMed  Google Scholar 

  62. Galkowski, K., et al.: Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9, 962–970 (2016)

    Article  CAS  Google Scholar 

  63. Abdellah, M., et al.: Drastic difference between hole and electron injection through the gradient shell of Cd: XSeyZn1-xS1-y quantum dots. Nanoscale 9, 12503–12508 (2017)

    Article  CAS  PubMed  Google Scholar 

  64. Hotta, H., Rempel, M., Yokoyama, T.: Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 1979(351), 1427–1430 (2016)

    Article  Google Scholar 

  65. Fang, Y., Wei, H., Dong, Q., Huang, J.: Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nat. Commun. 8, 1–9 (2017)

    Article  Google Scholar 

  66. Peng, J., Chen, Y., Zheng, K., Pullerits, T., Liang, Z.: Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chem. Soc. Rev. 46, 5714–5729 (2017)

    Article  CAS  PubMed  Google Scholar 

  67. Yang, Y., et al.: Near-unity photoluminescence quantum yield in MoS2. Science 1979(350), 1061–1065 (2015)

    Article  Google Scholar 

  68. Wang, H., Zhang, C., Rana, F.: Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett. 15, 339–345 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. Chen, H., et al.: Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas. Sci. Rep. 6, 1–11 (2016)

    Google Scholar 

  70. Hanlon, D., et al.: Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. (2015). https://doi.org/10.1038/ncomms9563

    Article  PubMed  Google Scholar 

  71. Wang, Z., et al.: Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires. Nanoscale 8, 6258–6264 (2016)

    Article  CAS  PubMed  Google Scholar 

  72. **ao, Z., et al.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–197 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. Ran, C., Xu, J., Gao, W., Huang, C., Dou, S.: Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev. 47, 4581–4610 (2018)

    Article  CAS  PubMed  Google Scholar 

  74. Hosseini, P., Wright, C.D., Bhaskaran, H.: An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014)

    Article  CAS  PubMed  Google Scholar 

  75. Dou, L.: Emerging two-dimensional halide perovskite nanomaterials. J Mater Chem C Mater 5, 11165–11173 (2017)

    Article  CAS  Google Scholar 

  76. Chen, S., Shi, G.: Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29, 1–31 (2017)

    Google Scholar 

  77. Li, X., Hoffman, J.M., Kanatzidis, M.G.: The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021)

    Article  CAS  PubMed  Google Scholar 

  78. Hoffman, J.M., et al.: Long periodic ripple in a 2D hybrid halide perovskite structure using branched organic spacers. Chem. Sci. 11, 12139–12148 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shi, D., et al.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 1979(347), 519–522 (2015)

    Article  Google Scholar 

  80. Weidman, M.C., Seitz, M., Stranks, S.D., Tisdale, W.A.: Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10, 7830–7839 (2016)

    Article  CAS  PubMed  Google Scholar 

  81. Cinquino, M., et al.: One-step synthesis at room temperature of low dimensional perovskite single crystals with high optical quality. J. Lumin. 221, 117079 (2020)

    Article  CAS  Google Scholar 

  82. Chen, W., et al.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 1979(350), 944–948 (2015)

    Article  Google Scholar 

  83. Zhang, B., et al.: Shape-evolution control of hybrid perovskite CH3NH3PbI3 crystals via solvothermal synthesis. J. Cryst. Growth 459, 167–172 (2017)

    Article  CAS  Google Scholar 

  84. Luo, B., et al.: Efficient trap-mediated Mn2+ dopant emission in two dimensional single-layered perovskite (CH3CH2NH3)2PbBr4. J. Phys. Chem. C 123, 14239–14245 (2019)

    Article  CAS  Google Scholar 

  85. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)

    Article  CAS  PubMed  Google Scholar 

  86. Song, T.B., et al.: Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139, 836–842 (2017)

    Article  CAS  PubMed  Google Scholar 

  87. Li, X., et al.: Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions (NH3CmH2 mNH3)(CH3NH3)n1PbnI3n+1 (m = 4–9; N = 1–4). J. Am. Chem. Soc. 140, 12226–12238 (2018)

    Article  CAS  PubMed  Google Scholar 

  88. Ha, S.T., et al.: Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2, 838–844 (2014)

    Article  CAS  Google Scholar 

  89. Dolzhenko, Y.I., Inabe, T., Maruyama, Y.: In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4. Bull. Chem. Soc. Japan 59, 563–567 (1986). https://doi.org/10.1246/bcsj.59.563

    Article  CAS  Google Scholar 

  90. Ishihara, T., Takahashi, J., Goto, T.: Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun. 69, 933–936 (1989)

    Article  CAS  Google Scholar 

  91. Billing, D.G., Lemmerer, A.: Synthesis, characterization and phase transitions in the inorganic–organic layered perovskite-type hybrids [(Cn H2n + 1NH3)2PbI4], n = 4, 5 and 6. Acta Crystallogr. B 63, 735–747 (2007)

    Article  CAS  PubMed  Google Scholar 

  92. Billing, D.G., Lemmerer, A.: Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18). New J. Chem. 32, 1736–1746 (2008)

    Article  CAS  Google Scholar 

  93. Lemmerer, A., Billing, D.G.: Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(C nH2n+1NH3)2PbI4], n = 7, 8, 9 and 10. Dalton Trans. 41, 1146–1157 (2012)

    Article  CAS  PubMed  Google Scholar 

  94. Mączka, M., Ptak, M., Gągor, A., Stefańska, D., Sieradzki, A.: Layered lead iodide of [methylhydrazinium]2PbI4 with a reduced band gap: thermochromic luminescence and switchable dielectric properties triggered by structural phase transitions. Chem. Mater. 31, 8563–8575 (2019)

    Article  Google Scholar 

  95. Mączka, M., et al.: Methylhydrazinium lead bromide: noncentrosymmetric three-dimensional perovskite with exceptionally large framework distortion and green photoluminescence. Chem. Mater. 32, 1667–1673 (2020)

    Article  Google Scholar 

  96. Maçzka, M., et al.: Three-dimensional perovskite methylhydrazinium lead chloride with two polar phases and unusual second-harmonic generation bistability above room temperature. Chem. Mater. 32, 4072–4082 (2020)

    Article  Google Scholar 

  97. Soe, C.M.M., et al.: Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. USA 116, 58–66 (2019)

    Article  PubMed  Google Scholar 

  98. Hoffman, J.M., et al.: From 2D to 1D electronic dimensionality in halide perovskites with stepped and flat layers using propylammonium as a spacer. J. Am. Chem. Soc. 141, 10661–10676 (2019)

    Article  CAS  PubMed  Google Scholar 

  99. Mitzi, D., Feild, C., Harrison, W., Guloy, A.: Conducting tin halides with a layered organic. Nature 369, 467–469 (1994)

    Article  CAS  Google Scholar 

  100. Li, L., et al.: A potential Sn-based hybrid perovskite ferroelectric semiconductor. J. Am. Chem. Soc. 142, 1159–1163 (2020)

    Article  CAS  PubMed  Google Scholar 

  101. Stoumpos, C., et al.: Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016)

    Article  CAS  Google Scholar 

  102. Dou, L., et al.: Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 1979(349), 1518–1521 (2015)

    Article  Google Scholar 

  103. Li, L., et al.: Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector. Angew. Chem. Int. Ed. 56, 12150–12154 (2017)

    Article  CAS  Google Scholar 

  104. Li, L., et al.: Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection. J. Am. Chem. Soc. 141, 2623–2629 (2019)

    Article  CAS  PubMed  Google Scholar 

  105. Spanopoulos, I., et al.: Uniaxial expansion of the 2D Ruddlesden–Popper perovskite family for improved environmental stability. J. Am. Chem. Soc. 141, 5518–5534 (2019)

    Article  CAS  PubMed  Google Scholar 

  106. Paritmongkol, W., et al.: Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites. Chem. Mater. 31, 5592–5607 (2019)

    Article  CAS  Google Scholar 

  107. Maczka, M., et al.: Three-dimensional perovskite methylhydrazinium lead chloride with two polar phases and unusual second-harmonic generation bistability above room temperature. Chemistry of Materials 32, 4072–4082 (2020)

    Article  CAS  Google Scholar 

  108. Billing, D.G., Lemmerer, A.: Inorganic–organic hybrid materials incorporating primary cyclic ammonium cations: the lead iodide series. CrystEngComm 9, 236–244 (2007)

    Article  CAS  Google Scholar 

  109. Zhang, L., et al.: Preparation and characterization of layered rare earth compound. Key Eng. Mater. 633, 73–76 (2014)

    Article  Google Scholar 

  110. Du, K.Z., et al.: Two-dimensional lead(II) halide-based hybrid perovskites templated by acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg. Chem. 56, 9291–9302 (2017)

    Article  CAS  PubMed  Google Scholar 

  111. Wei, H., et al.: Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333–339 (2016)

    Article  CAS  Google Scholar 

  112. Mercier, N., Poiroux, S., Riou, A., Batail, P.: Unique hydrogen bonding correlating with a reduced band gap and phase transition in the hybrid perovskites (HO(CH2)2NH3)2PbX4 (X = I, Br). Inorg. Chem. 43, 8361–8366 (2004)

    Article  CAS  PubMed  Google Scholar 

  113. Sourisseau, S., et al.: Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic-inorganic interface. Chem. Mater. 19, 600–607 (2007)

    Article  CAS  Google Scholar 

  114. Lemmerer, A., Billing, D.G.: Effect of heteroatoms in the inorganic-organic layered perovskite-type hybrids [(ZCnH2nNH3)2PbI4], n = 2, 3, 4, 5, 6; Z = OH, Br and I; And [(H3NC2H4S2C2H4NH3)PbI4]. CrystEngComm 12, 1290–1301 (2010)

    Article  CAS  Google Scholar 

  115. Liu, C., et al.: Tunable semiconductors: control over carrier states and excitations in layered hybrid organic-inorganic perovskites. Phys. Rev. Lett. 121, 146401 (2018)

    Article  CAS  PubMed  Google Scholar 

  116. Mitzi, D.B., Chondroudis, K., Kagan, C.R.: Design, structure, and optical properties of organic-inorganic perovskites containing an oligothiophene chromophore. Inorg. Chem. 38, 6246–6256 (1999)

    Article  CAS  PubMed  Google Scholar 

  117. Gao, Y., et al.: Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019)

    Article  CAS  PubMed  Google Scholar 

  118. Soe, C.M.M., et al.: New type of 2D perovskites with alternating cations in the interlayer space (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139, 16297–16309 (2017)

    Article  CAS  PubMed  Google Scholar 

  119. Han, Y., et al.: From distortion to disconnection: linear alkyl diammonium cations tune structure and photoluminescence of lead bromide perovskites. Adv Opt Mater 8, 1902051 (2020)

    Article  CAS  Google Scholar 

  120. Corradi, A.B., Ferrari, A.M., Righi, L., Sgarabotto, P.: An additional structural and electrical study of polymeric haloplumbates(II) with heterocyclic diprotonated amines. Inorg. Chem. 40, 218–223 (2001)

    Article  CAS  Google Scholar 

  121. Xu, Z., Mitzi, D.B., Medeiros, D.R.: [(CH3)3NCH2CH2NH3]SNl4: a layered perovskite with quaternary/primary ammonium dications and short interlayer iodine-iodine contacts. Inorg. Chem. 42, 1400–1402 (2003)

    Article  CAS  PubMed  Google Scholar 

  122. Rayner, M.K., Billing, D.G.: Poly[1,4-bis-(ammoniomethyl)cyclo-hexane [di-μ-iodido-diiodido-plumbate(II)]. Acta Crystallogr. Sect. E Struct. Rep. Online 66, m660–m660 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hautzinger, M.P., et al.: Two-dimensional lead halide perovskites templated by a conjugated asymmetric diammonium. Inorg. Chem. 56, 14991–14998 (2017)

    Article  CAS  PubMed  Google Scholar 

  124. Dobrzycki, L., Woźniak, K.: Inorganic–organic hybrid salts of diaminobenzenes and related cations. CrystEngComm 10, 577–589 (2008)

    Article  CAS  Google Scholar 

  125. Mao, L., et al.: Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018)

    Article  CAS  PubMed  Google Scholar 

  126. Li, X., et al.: Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 141, 12880–12890 (2019)

    Article  CAS  PubMed  Google Scholar 

  127. Jiang, Y., Wei, J., Yuan, M.: Energy-funneling process in quasi-2D perovskite light-emitting diodes. J. Phys. Chem. Lett. 12, 2593–2606 (2021)

    Article  CAS  PubMed  Google Scholar 

  128. Yuan, M., et al.: Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016)

    Article  CAS  PubMed  Google Scholar 

  129. Saliba, M., et al.: How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chem. Mater. 30, 4193–4201 (2018)

    Article  CAS  Google Scholar 

  130. Uddin, M. A.: Designing metal-halide perovskites with enhanced optical properties and stability using surface ligands. Theses and Dissertations—Chemistry, vol. 133 (2020)

    Google Scholar 

  131. Liang, C., et al.: Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nat. Energy 6, 38–45 (2021)

    Article  Google Scholar 

  132. Sidhik, S., et al.: High-phase purity two-dimensional perovskites with 17.3% efficiency enabled by interface engineering of hole transport layer. Cell Rep. Phys. Sci. 2, 100601 (2021)

    Article  CAS  Google Scholar 

  133. Huang, Y., et al.: Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering. J. Am. Chem. Soc. 143, 3911–3917 (2021)

    Article  CAS  PubMed  Google Scholar 

  134. Huang, W., Bu, T., Huang, F., Cheng, Y.B.: Stabilizing high efficiency perovskite solar cells with 3D–2D heterostructures. Joule 4, 975–979 (2020)

    Article  Google Scholar 

  135. Tsai, H., et al.: High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–317 (2016)

    Article  CAS  PubMed  Google Scholar 

  136. Li, Y., et al.: Direct observation of long electron–hole diffusion distance in CH3NH3PbI3 perovskite thin film. Sci. Rep. 5, 14485 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Madhavan, V.E., et al.: CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Appl. Energy Mater. 3, 114–121 (2020)

    Article  CAS  Google Scholar 

  138. Smith, I.C., Hoke, E.T., Solis-Ibarra, D., McGehee, M.D., Karunadasa, H.I.: A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014)

    Article  CAS  Google Scholar 

  139. Chen, Y., et al.: Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 7, 1700162 (2017)

    Article  Google Scholar 

  140. Proppe, A.H., et al.: Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. Nat. Commun. 12, 3472 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, H., et al.: 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy 8, 946–955 (2023)

    Article  CAS  Google Scholar 

  142. Sidhik, S., et al.: Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 1979(377), 1425–1430 (2022)

    Article  Google Scholar 

  143. Ma, K., et al.: Holistic energy landscape management in 2D/3D heterojunction via molecular engineering for efficient perovskite solar cells. Sci. Adv. (2023). https://doi.org/10.1126/sciadv.adg0032

    Article  PubMed  PubMed Central  Google Scholar 

  144. Fakharuddin, A., et al.: Perovskite light-emitting diodes. Nat. Electron. 5, 203–216 (2022)

    Article  CAS  Google Scholar 

  145. Kim, Y.H., et al.: Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15, 148–155 (2021)

    Article  CAS  Google Scholar 

  146. Wang, Y.K., et al.: All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60, 16164–16170 (2021)

    Article  CAS  Google Scholar 

  147. Yang, X., et al.: Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  148. Vescio, G., et al.: 2D PEA2SnI4 inkjet-printed halide perovskite LEDs on rigid and flexible substrates. ACS Energy Lett. 7, 3653–3655 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sun, C., et al.: High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 2207 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, T., et al.: Self-assembled bilayer microstructure improves quasi-2D perovskite light-emitting diodes. Chem. Mater. 34, 10435–10442 (2022)

    Article  CAS  Google Scholar 

  151. Lin, Y.K., et al.: Realizing high brightness quasi-2D perovskite light-emitting diodes with reduced efficiency roll-off via multifunctional interface engineering. Adv. Sci. (2023). https://doi.org/10.1002/advs.202302232

    Article  Google Scholar 

  152. Liu, Y., et al.: Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy 80, 105511 (2021)

    Article  CAS  Google Scholar 

  153. Yuan, F., et al.: Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. Sci. Adv. 6, eabb0253 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Era, M., Morimoto, S., Tsutsui, T., Saito, S.: Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 65, 676–678 (1994)

    Article  CAS  Google Scholar 

  155. Liang, D., et al.: Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016)

    Article  CAS  PubMed  Google Scholar 

  156. Zhang, L., et al.: High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light Sci. Appl. 10, 61 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vashishtha, P., Ng, M., Shivarudraiah, S.B., Halpert, J.E.: High efficiency blue and green light-emitting diodes using Ruddlesden–Popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 31, 83–89 (2018)

    Article  Google Scholar 

  158. Byun, J., et al.: Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016)

    Article  CAS  PubMed  Google Scholar 

  159. Wang, N., et al.: Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10, 699–704 (2016)

    Article  CAS  Google Scholar 

  160. Lei, L., Dong, Q., Gundogdu, K., So, F.: Metal halide perovskites for laser applications. Adv. Funct. Mater. 31, 2010144 (2021)

    Article  CAS  Google Scholar 

  161. Alvarado-Leaños, A.L., et al.: Lasing in two-dimensional tin perovskites. ACS Nano 16, 20671–20679 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wang, C., et al.: Low-threshold blue quasi-2D perovskite laser through domain distribution control. Nano Lett. 22, 1338–1344 (2022)

    Article  CAS  PubMed  Google Scholar 

  163. Li, Y., et al.: Phase-pure 2D tin halide perovskite thin flakes for stable lasing. Sci. Adv. 9, eadh051 (2023)

    Google Scholar 

  164. Fruhling, C., et al.: Coherent random lasing in subwavelength quasi-2D perovskites. Laser Photon Rev. (2023). https://doi.org/10.1002/lpor.202200314

    Article  Google Scholar 

  165. Kondo, T., Azuma, T., Yuasa, T., Ito, R.: Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 105, 253–255 (1998)

    Article  CAS  Google Scholar 

  166. Huang, T., et al.: Enhancing two-dimensional perovskite photodetector performance through balancing carrier density and directional transport. J. Mater. Chem. A Mater. 10, 21044–21052 (2022)

    Article  CAS  Google Scholar 

  167. Wan, J., et al.: 2D Ruddlesden–Popper polycrystalline perovskitepyro-phototronic photodetectors. Small (2023). https://doi.org/10.1002/smll.202207185

    Article  PubMed  Google Scholar 

  168. Guo, L., et al.: 2D Ruddlesden–Popper perovskite ferroelectric film for high-performance, self-powered and ultra-stable UV photodetector boosted by ferro-pyro-phototronic effect and surface passivation. Nano Energy 102, 107714 (2022)

    Article  CAS  Google Scholar 

  169. Li, W., et al.: Molecular engineering for sensitive, fast and stable quasi-two-dimensional perovskite photodetectors. J. Mater. Chem. C Mater. 11, 3314–3324 (2023)

    Article  CAS  Google Scholar 

  170. Pariari, D., et al.: Realizing the lowest bandgap and exciton binding energy in a two-dimensional lead halide system. J. Am. Chem. Soc. 145, 15896–15905 (2023)

    Article  CAS  PubMed  Google Scholar 

  171. Lan, C., Zhou, Z., Wei, R., Ho, J.C.: Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater. Today Energy 11, 61–82 (2019)

    Article  CAS  Google Scholar 

  172. Ahmad, S., et al.: Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets. ACS Appl. Mater. Interfaces. 7, 25227–25236 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lu, J., et al.: Origin and physical effects of edge states in two-dimensional Ruddlesden-Popper perovskites. iScience 25, 104420 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tan, Z., et al.: Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector. J. Am. Chem. Soc. 138, 16612–16615 (2016)

    Article  CAS  PubMed  Google Scholar 

  175. Dong, R., et al.: Novel series of quasi-2D Ruddlesden–Popper perovskites based on short-chained spacer cation for enhanced photodetection. ACS Appl. Mater. Interfaces. 10, 19019–19026 (2018)

    Article  CAS  PubMed  Google Scholar 

  176. Hossain, R., Aslam Uddin, M., Arif Khan, M.: Mechanistic understanding in manipulating energetics of TiO2 for photocatalysis. J. Phys. Chem. C 127, 10897–10912 (2023)

    Article  CAS  Google Scholar 

  177. Xu, Q., et al.: Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042–1063 (2018)

    Article  CAS  Google Scholar 

  178. Gupta, N.K., et al.: Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci. Rep. 10, 1–11 (2020)

    Google Scholar 

  179. Köwitsch, I., Schäfer, A., Hornig, D., Mehring, M.: Photocatalytic water purification under visible light using carbon nitride materials and β-Bi2O3 immobilized on electrospun polyvinyl acetate fibers. SN Appl. Sci. 4, 64 (2022)

    Article  Google Scholar 

  180. Zhang, W., Zhong, X.: Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst. Inorg. Chem. 50, 4065–4072 (2011)

    Article  CAS  PubMed  Google Scholar 

  181. Uddin, M.A., et al.: Mechanistic exploration of dodecanethiol treated colloidal CsPbBr3 nanocrystals with photoluminescence quantum yields reaching near 100%. J. Phys. Chem. C 123, 18103–18112 (2019)

    Article  CAS  Google Scholar 

  182. Akinoglu, E.M., Hoogeveen, D.A., Cao, C., Simonov, A.N., Jasieniak, J.J.: Prospects of Z-scheme photocatalytic systems based on metal halide perovskites. ACS Nano 15, 7860–7878 (2021)

    Article  CAS  PubMed  Google Scholar 

  183. Supin, K.K., ParvathyNamboothiri, P.N., Vasundhara, M.: Enhanced photocatalytic activity in ZnO nanoparticles developed using novel Lepidagathis ananthapuramensis leaf extract. RSC Adv. 13, 1497–1515 (2023)

    Article  Google Scholar 

  184. Mirzaeifard, Z., Shariatinia, Z., Jourshabani, M., Darvishi, S.M.R.: ZnO photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation. Indus. Eng. Chem. Res. 59, 15894–15911 (2020)

    Article  CAS  Google Scholar 

  185. Cao, C., Zhang, B., Lin, S.: P-type ZnO for photocatalytic water splitting. APL Mater. 10, 3314–3324 (2022)

    Article  Google Scholar 

  186. Romani, L., et al.: PEA2SnBr4: a water-stable lead-free two-dimensional perovskite and demonstration of its use as a co-catalyst in hydrogen photogeneration and organic-dye degradation. J. Mater. Chem. C Mater. 8, 9189–9194 (2020)

    Article  CAS  Google Scholar 

  187. Lee, H., et al.: Chirality-induced spin selectivity of chiral 2D perovskite enabling efficient spin-dependent oxygen evolution reaction. Small 19, 2304166 (2023)

    Article  CAS  Google Scholar 

  188. Aguirre, M.E., Zhou, R., Eugene, A.J., Guzman, M.I., Grela, M.A.: Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: protecting Cu2O from photocorrosion. Appl. Catal. B 217, 485–493 (2017)

    Article  CAS  Google Scholar 

  189. Roy, N., Sohn, Y., Pradhan, D.: Synergy of low-energy 101 and high-energy 001 TiO2 crystal facets for enhanced photocatalysis. ACS Nano 7, 2532–2540 (2013)

    Article  CAS  PubMed  Google Scholar 

  190. Mu, Y.F., et al.: Direct Z-scheme heterojunction of ligand-free FAPbBr3/α-Fe2O3 for boosting photocatalysis of CO2 reduction coupled with water oxidation. ACS Appl. Mater. Interfaces 13, 22314–22322 (2021)

    Article  CAS  PubMed  Google Scholar 

  191. Gonzalez-Moya, J.R., Chang, C.-Y., Radu, D.R., Lai, C.-Y.: Photocatalytic deposition of nanostructured CsPbBr3 perovskite quantum dot films on mesoporous TiO2 and their enhanced visible-light photodegradation properties. ACS Omega 7, 26738–26748 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cheng, R., **, H., Roeffaers, M.B.J., Hofkens, J., Debroye, E.: Incorporation of cesium lead halide perovskites into g-C3N4for photocatalytic CO2 reduction. ACS Omega 5, 24495–24503 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Huang, H., Pradhan, B., Hofkens, J., Roeffaers, M.B.J., Steele, J.A.: Solar-driven metal halide perovskite photocatalysis: design, stability, and performance. ACS Energy Lett. 5, 1107–1123 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudev Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uddin, M.A., Kumar, P., Rana, P.J.S., Pradhan, B. (2024). Two-Dimensional (2D) Perovskite and Its Applications. In: Pradhan, B. (eds) Perovskite Optoelectronic Devices. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-57663-8_16

Download citation

Publish with us

Policies and ethics

Navigation