Enhancing Embedded IoT Systems for Intrusion Detection Using a Hybrid Model

  • Chapter
  • First Online:
Artificial Intelligence for Security
  • 42 Accesses

Abstract

Intrusion detection in Internet of Things (IoT) networks is a critical challenge due to the dynamic and evolving nature of cyber threats. To address this issue, we propose a novel hybrid intrusion detection algorithm that combines the deep autoencoder-based intrusion detection system (DAIDS) with recurrent neural networks (RNNs). The hybrid model aims to leverage the strengths of both approaches to enhance the accuracy and robustness of intrusion detection in IoT networks. The DAIDS component employs a deep autoencoder to capture complex spatial patterns in the network traffic data and calculate the reconstruction error as an anomaly score. The RNN component focuses on capturing temporal dependencies within sequential traffic data, providing a comprehensive understanding of network behavior over time. The output of the RNN is integrated into the DAIDS framework, augmenting the feature representation and enabling better anomaly detection. Experimental evaluation is conducted on a diverse IoT network traffic dataset, and the results showcase the effectiveness of the proposed hybrid DAIDS-RNN model. Comparative analysis demonstrates that the hybrid approach outperforms stand-alone DAIDS and RNN models in terms of accuracy, precision, recall, and F1-score. The hybrid model’s ability to identify both known and evolving attack patterns highlights its potential to enhance IoT intrusion detection systems. This study contributes to the advancement of intrusion detection techniques for IoT networks by introducing a hybrid approach that marries spatial and temporal insights for improved detection accuracy and adaptability to evolving threats. The proposed hybrid DAIDS-RNN model demonstrates its applicability in real-world IoT security scenarios, paving the way for more effective with 99.64 % accuracy and robust intrusion detection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboelwafa, M.M.N., Seddik, K.G., Eldefrawy, M.H., Gadallah, Y., Gidlund, M.: A machine-learning-based technique for false data injection attacks detection in industrial IoT. IEEE Internet Things J. 7(9), 8462–8471 (2020). https://doi.org/10.1109/JIOT.2020.2991693

    Article  Google Scholar 

  2. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016)

    Article  Google Scholar 

  3. Ahmed, S.W., Kientz, F., Kashef, R.: A modified transformer neural network (MTNN) for robust intrusion detection in IoT networks. In: 2023 International Telecommunications Conference (ITC-Egypt), pp. 663–668 (2023). https://doi.org/10.1109/ITC-Egypt58155.2023.10206134

  4. Alkahtani, H., Aldhyani, T.H.: Intrusion detection system to advance Internet of Things infrastructure-based deep learning algorithms. Complexity 2021 (2021)

    Google Scholar 

  5. Alqarni, M.: IoT intrusion detection dataset (2022). https://www.kaggle.com/datasets/malqarni/iotdataset

  6. Alqarni, M., Azim, A.: Software source code vulnerability detection using advanced deep convolutional neural network. In: Proceedings of the 31st Annual International Conference on Computer Science and Software Engineering, pp. 226–231 (2021)

    Google Scholar 

  7. Bach, M., Werner, A., Palt, M.: The proposal of undersampling method for learning from imbalanced datasets. Proc. Comput. Sci. 159, 125–134 (2019)

    Article  Google Scholar 

  8. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2) (2012)

    Google Scholar 

  9. Boumkheld, N., Ghogho, M., El Koutbi, M.: Intrusion detection system for the detection of blackhole attacks in a smart grid. In: 2016 4th International Symposium on Computational and Business Intelligence (ISCBI), pp. 108–111. IEEE, Piscataway (2016)

    Google Scholar 

  10. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121–3124. IEEE, Piscataway (2010)

    Google Scholar 

  11. Cleetus, N., Dhanya, K.: Multi-objective functions in particle swarm optimization for intrusion detection. In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 387–392. IEEE, Piscataway (2014)

    Google Scholar 

  12. da Costa, K.A., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C.: Internet of Things: a survey on machine learning-based intrusion detection approaches. Comput. Netw. 151, 147–157 (2019). https://doi.org/https://doi.org/10.1016/j.comnet.2019.01.023. https://www.sciencedirect.com/science/article/pii/S1389128618308739

  13. Djellali, C., Adda, M.: A new hybrid deep learning model based-recommender system using artificial neural network and hidden Markov model. Procedia Computer Science 175, 214–220 (2020). https://doi.org/https://doi.org/10.1016/j.procs.2020.07.032. https://www.sciencedirect.com/science/article/pii/S1877050920317129. The 17th International Conference on Mobile Systems and Pervasive Computing (MobiSPC),The 15th International Conference on Future Networks and Communications (FNC),The 10th International Conference on Sustainable Energy Information Technology

  14. Enache, A.C., Sgârciu, V.: A feature selection approach implemented with the binary bat algorithm applied for intrusion detection. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), pp. 11–15 (2015). https://doi.org/10.1109/TSP.2015.7296215

  15. Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based network intrusion detection: techniques, systems and challenges. Comput. Secur. 28(1–2), 18–28 (2009)

    Article  Google Scholar 

  16. Grzymala-Busse, J.W., Stefanowski, J., Wilk, S.: A comparison of two approaches to data mining from imbalanced data. J. Intell. Manuf. 16(6), 565–573 (2005)

    Article  Google Scholar 

  17. Hanif, S., Ilyas, T., Zeeshan, M.: Intrusion detection in IoT using artificial neural networks on UNSW-15 dataset. In: 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT), pp. 152–156. IEEE, Piscataway (2019)

    Google Scholar 

  18. Hasan, M.N., Toma, R.N., Nahid, A.A., Islam, M.M., Kim, J.M.: Electricity theft detection in smart grid systems: a CNN-LSTM based approach. Energies 12(17), 3310 (2019)

    Article  Google Scholar 

  19. Hashish, I.A., Forni, F., Andreotti, G., Facchinetti, T., Darjani, S.: A hybrid model for bitcoin prices prediction using hidden Markov models and optimized LSTM networks. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 721–728 (2019). https://doi.org/10.1109/ETFA.2019.8869094

  20. Iasiello, E.: Cyber attack: A dull tool to shape foreign policy. In: 2013 5th International Conference on Cyber Conflict (CYCON 2013), pp. 1–18. IEEE, Piscataway (2013)

    Google Scholar 

  21. Jokar, P., Leung, V.C.: Intrusion detection and prevention for ZigBee-based home area networks in smart grids. IEEE Trans. Smart Grid 9(3), 1800–1811 (2016)

    Google Scholar 

  22. Kareem, S., SS, K., Mostafa, R., RR, M.: An Effective Feature Selection Model Using Hybrid Metaheuristic Algorithms for IoT Intrusion Detection, vol. 2022. Basel (2022)

    Google Scholar 

  23. Khan, M.N., Rao, A., Camtepe, S.: Lightweight cryptographic protocols for IoT-constrained devices: a survey. IEEE Internet Things J. 8(6), 4132–4156 (2021). https://doi.org/10.1109/JIOT.2020.3026493

    Article  Google Scholar 

  24. Kiran, K.S., Devisetty, R.K., Kalyan, N.P., Mukundini, K., Karthi, R.: Building a intrusion detection system for IoT environment using machine learning techniques. Proc. Comput. Sci. 171, 2372–2379 (2020)

    Article  Google Scholar 

  25. Li, W., Tug, S., Meng, W., Wang, Y.: Designing collaborative blockchained signature-based intrusion detection in IoT environments. Fut. Gener. Comput. Syst. 96, 481–489 (2019). https://doi.org/https://doi.org/10.1016/j.future.2019.02.064. https://www.sciencedirect.com/science/article/pii/S0167739X18327237

  26. Lin, X.X., Lin, P., Yeh, E.H.: Anomaly detection/prediction for the internet of things: state of the art and the future. IEEE Netw. 35(1), 212–218 (2021). https://doi.org/10.1109/MNET.001.1800552

    Article  Google Scholar 

  27. Martins, A., Mateus, B., Fonseca, I., Farinha, J.T., Rodrigues, J., Mendes, M., Cardoso, A.M.: Predicting the health status of a pulp press based on deep neural networks and hidden Markov models. Energies 16(6) (2023). https://doi.org/10.3390/en16062651. https://www.mdpi.com/1996-1073/16/6/2651

  28. Mohammed, A., Saleh, A., Majdi, B., Muder, A., Salwani, A.: Intrusion detection for IoT based on a hybrid shuffled shepherd optimization algorithm. In: The Journal of Supercomputing. The Journal of Supercomputing (2022)

    Google Scholar 

  29. Muhammad, K., Hussain, T., Tanveer, M., Sannino, G., de Albuquerque, V.H.C.: Cost-effective video summarization using deep CNN with hierarchical weighted fusion for IoT surveillance networks. IEEE Internet Things J. 7(5), 4455–4463 (2020). https://doi.org/10.1109/JIOT.2019.2950469

    Article  Google Scholar 

  30. Saeed, A., Ahmadinia, A., Javed, A., Larijani, H.: Intelligent intrusion detection in low power IoTs. ACM Trans. Internet Technol. 16(4), 1–25 (2016)

    Article  Google Scholar 

  31. Saxena, H., Richariya, V.: Intrusion detection in kdd99 dataset using SVM-PSO and feature reduction with information gain. Int. J. Comput. Appl. 98(6) (2014)

    Google Scholar 

  32. Sebastian Garcia Agustin Parmisano, M.J.E.: Iot-23: A labeled dataset with malicious and benign IoT network traffic (version 1.0.0) [data set]. Zenodo (2020). http://doi.org/10.5281/zenodo.4743746

  33. da Silva, A.S., Wickboldt, J.A., Granville, L.Z., Schaeffer-Filho, A.: Atlantic: a framework for anomaly traffic detection, classification, and mitigation in SDN. In: NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, pp. 27–35. IEEE, Piscataway (2016)

    Google Scholar 

  34. Suresh, G.M., Madhavu, M.L.: Ai based intrusion detection system using self-adaptive energy efficient bat algorithm for software defined IoT networks. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–6. IEEE, Piscataway (2020)

    Google Scholar 

  35. Tahsien, S.M., Karimipour, H., Spachos, P.: Machine learning based solutions for security of internet of things (Iot): a survey. J. Netw. Comput. Appl. 161, 102630 (2020). https://doi.org/https://doi.org/10.1016/j.jnca.2020.102630. https://www.sciencedirect.com/science/article/pii/S1084804520301041

  36. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6 (2009). https://doi.org/10.1109/CISDA.2009.5356528

  37. Thant, Y.M., Su Thwin, M.M., Htwe, C.S.: Iot network intrusion detection using long short-term memory recurrent neural network. In: 2023 IEEE Conference on Computer Applications (ICCA), pp. 334–339 (2023). https://doi.org/10.1109/ICCA51723.2023.10182005

  38. Ullah, I., Mahmoud, Q.H.: A scheme for generating a dataset for anomalous activity detection in IoT networks. In: Canadian Conference on Artificial Intelligence, pp. 508–520. Springer, Berlin (2020)

    Google Scholar 

  39. Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., Huang, Y., Zhu, M.: HAST-IDS: learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6, 1792–1806 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Alqarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alqarni, M., Azim, A. (2024). Enhancing Embedded IoT Systems for Intrusion Detection Using a Hybrid Model. In: Sipola, T., Alatalo, J., Wolfmayr, M., Kokkonen, T. (eds) Artificial Intelligence for Security. Springer, Cham. https://doi.org/10.1007/978-3-031-57452-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57452-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57451-1

  • Online ISBN: 978-3-031-57452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation