Fuzzy Machine Learning for Smart Grid Instability Detection

  • Chapter
  • First Online:
Artificial Intelligence for Security

Abstract

The smart grid is an advanced power system concept that integrates electricity and communication within system networks. Its primary goal is to provide real-time information to producers, operators, and consumers. Efficiently routing energy to different consumer domains, including households, organizations, industries, and smart cities, is of utmost importance due to the increasing demand for dynamic energy supply. To address the need for a stable smart grid system that can meet these demands, we propose a method in this study to detect the stability of a smart grid. For this purpose, we employ fuzzy supervised machine learning, which has proven to be effective in handling uncertain data. Using a dataset containing 60,000 smart grid observations, we evaluate our approach and present compelling results, demonstrating the efficiency of the fuzzy machine learning model in detecting different states of the smart grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.kaggle.com/code/mineshjethva/power-grid-stability-with-deep-learning

  2. 2.

    http://www.cs.waikato.ac.nz/ml/weka/

  3. 3.

    http://users.aber.ac.uk/rkj/book/wekafull.jar

References

  1. Aghamohammadi, M.R., Abedi, M.: Dt based intelligent predictor for out of step condition of generator by using PMU data. Int. J. Electr. Power Energy Syst. 99, 95–106 (2018)

    Article  Google Scholar 

  2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Article  Google Scholar 

  3. Arzamasov, V., Böhm, K., Jochem, P.: Towards concise models of grid stability. In: 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–6. IEEE, Piscataway (2018)

    Google Scholar 

  4. Breviglieri, P., Erdem, T., Eken, S.: Predicting smart grid stability with optimized deep models. SN Comput. Sci. 2(2), 1–12 (2021)

    Article  Google Scholar 

  5. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123 (1995)

    Google Scholar 

  6. Dewangan, F., Biswal, M., Patnaik, B., Hasan, S., Mishra, M.: Smart grid stability prediction using genetic algorithm-based extreme learning machine. In: Electric Power Systems Resiliency, pp. 149–163. Elsevier, Amsterdam (2022)

    Google Scholar 

  7. Ezzahra, H.F., Aatila, M., Lachgar, M., Abdali, A.: Predicting smart grid stability using machine learning algorithms. In: 2022 11th International Symposium on Signal, Image, Video and Communications (ISIVC), pp. 1–6. IEEE, Piscataway (2022)

    Google Scholar 

  8. Ghosh, A., KOLE, A.: A comparative analysis of enhanced machine learning algorithms for smart grid stability prediction (2021)

    Google Scholar 

  9. Gupta, A., Gurrala, G., Sastry, P.: An online power system stability monitoring system using convolutional neural networks. IEEE Trans. Power Syst. 34(2), 864–872 (2018)

    Article  Google Scholar 

  10. Hühn, J., Hüllermeier, E.: Furia: an algorithm for unordered fuzzy rule induction. Data Mining Knowl. Discovery 19(3), 293–319 (2009)

    Article  MathSciNet  Google Scholar 

  11. Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbour classification. In: International Conference on Rough Sets and Current Trends in Computing, pp. 310–319. Springer, Berlin (2008)

    Google Scholar 

  12. Khan, A.A., Wiens, T., Massoth, M.: Stability improvement solution of the smart power grid by an analysis of voltage variation in intelligent buildings. In: SMART 2014: The Third International Conference on Smart Systems, Devices and Technologies, pp. 13–19 (2014)

    Google Scholar 

  13. Kreimel, P., Eigner, O., Mercaldo, F., Santone, A., Tavolato, P.: Anomaly detection in substation networks. J. Inform. Secur. Appl. 54, 102527 (2020)

    Google Scholar 

  14. Martinelli, F., Mercaldo, F., Nardone, V., Santone, A.: Car hacking identification through fuzzy logic algorithms. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7. IEEE, Piscataway (2017)

    Google Scholar 

  15. Martinelli, F., Mercaldo, F., Santone, A.: Machine learning for driver detection through can bus. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1–5. IEEE, Piscataway (2020)

    Google Scholar 

  16. Martinelli, F., Mercaldo, F., Santone, A.: A method for intrusion detection in smart grid. Proc. Comput. Sci. 207, 327–334 (2022)

    Article  Google Scholar 

  17. Martinelli, F., Mercaldo, F., Santone, A.: Water meter reading for smart grid monitoring. Sensors 23(1), 75 (2022)

    Article  Google Scholar 

  18. Moldovan, D., Salomie, I.: Detection of sources of instability in smart grids using machine learning techniques. In: 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 175–182. IEEE, Piscataway (2019)

    Google Scholar 

  19. Schäfer, B., Grabow, C., Auer, S., Kurths, J., Witthaut, D., Timme, M.: Taming instabilities in power grid networks by decentralized control. Eur. Phys. J. Special Topics 225(3), 569–582 (2016)

    Article  Google Scholar 

  20. Schäfer, B., Matthiae, M., Timme, M., Witthaut, D.: Decentral smart grid control. N. J. Phys. 17(1), 015002 (2015)

    Article  Google Scholar 

  21. Tiwari, S., Jain, A., Yadav, K., Ramadan, R.: Machine learning-based model for prediction of power consumption in smart grid. Int. Arab J. Inf. Technol. 19(3), 323–329 (2022)

    Google Scholar 

  22. Zare, H., Alinejad-Beromi, Y., Yaghobi, H.: Intelligent prediction of out-of-step condition on synchronous generators because of transient instability crisis. Int. Trans. Electr. Energy Syst. 29(1), e2686 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by EU DUCA, EU CyberSecPro, EU E-CORRIDOR, PTR 22-24 P2.01 (Cybersecurity), and SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the EU – NextGenerationEU projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Martinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinelli, F., Mercaldo, F., Santone, A. (2024). Fuzzy Machine Learning for Smart Grid Instability Detection. In: Sipola, T., Alatalo, J., Wolfmayr, M., Kokkonen, T. (eds) Artificial Intelligence for Security. Springer, Cham. https://doi.org/10.1007/978-3-031-57452-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57452-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57451-1

  • Online ISBN: 978-3-031-57452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation