The Effect of Dam** on the Energy Transfer in the Spherical Pendulum with Fractional Dam** in a Pivot Point

  • Conference paper
  • First Online:
Perspectives in Dynamical Systems II — Numerical and Analytical Approaches (DSTA 2021)

Abstract

Nonlinear vibrations of a system with three degrees of freedom with a spherical pendulum are investigated. The system contains an oscillator and a spherical pendulum suspended from the oscillator. The dam** at the pendulum pivot point is assumed to be modelled by a fractional derivative. The viscoelastic dam** properties are described using the fractional Caputo derivative of order \(0 <\alpha \le 1\) . Vibrations in the vicinity of the internal and external resonance are considered. The effect of the order of the fractional derivative on the vibrations of the autoparametric system is studied. Responses of the system, the internal and external resonance, bifurcation diagrams, Poincaré maps and the Lyapunov exponents have been calculated for various orders of fractional derivatives. Chaotic motion has been found for some system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Freundlich, J., Sado, D.: Dynamics of a coupled mechanical system containing a spherical pendulum and a fractional damper. Meccanica. 55, 2541–2553 (2020). https://doi.org/10.1016/0022-2836(81)90087-5

    Article  MathSciNet  Google Scholar 

  2. Sado, D., Freundlich, J., Bobrowska, A.: The dynamics of a coupled mechanical system with spherical pendulum. J Theoret. Appl. Mech. 55(3), 779–786 (2017). https://doi.org/10.15632/jtam-pl.55.3.77

    Article  Google Scholar 

  3. Sado, D., Freundlich, J.: Dynamics control of an autoparametric system with the spherical pendulum using MR damper, Vib. Phys. Sys. 29, 2018016 (2018)

    Google Scholar 

  4. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud Z.N.: Dynamics and control of cranes: a review, J. Vib. Control. 9, 863–908 (2003)

    Article  Google Scholar 

  5. Chin, C., Nayfeh, A.H., Mook, D.T: Dynamics and Control of Ship-Mounted Cranes. J Vib Control. 7, 891–904 (2001)

    Article  Google Scholar 

  6. Chin, C., Nayfeh, A.H., Abdel-Rahman, E.: Nonlinear Dynamics of a Boom Crane J Vib Control. 7, 199–220 (2001)

    Google Scholar 

  7. Ghigliazza, R.M., Holmes, P.: On the dynamics of cranes, or spherical pendula with moving supports. Int. J. Non-Linear Mech. 37, 1211–1221 (2002)

    Article  Google Scholar 

  8. Leung, A.Y.T., Kuang, J.L.: On the Chaotic Dynamics of a Spherical Pendulum with a Harmonically Vibrating Suspension. Nonlinear Dyn 43, 213–238 (2006) https://doi.org/10.1007/s11071-006-7426-8

    Article  MathSciNet  Google Scholar 

  9. Perig, A.V., Stadnik, A.N, Deriglazov, A.I., Podlesny, S.V.: 3 DOF spherical pendulum oscillations with a uniform slewing pivot center and a small angle assumption. Shock. Vib. 32, 203709 (2014) https://doi.org/10.1155/2014/203709

    Google Scholar 

  10. Náprstek, J., Fisher, C.: Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper. Comput. Struct. 87, 1204–1215 (2009)

    Article  Google Scholar 

  11. Warmiński, J., Kencik, K.: Instabilities in the main parametric resonance area of a mechanical system with a pendulum. J. Sound Vib. 322, 612–628 (2009)

    Article  Google Scholar 

  12. Ikeda, T., Harata, Y., Takeeda, A.: Nonlinear responses of spherical pendulum vibration absorbers in towerlike 2DOF structures. Nonlinear Dyn. 88, 2915–2932 (2017)

    Article  Google Scholar 

  13. Xu, J., Tang, J.: Modeling and analysis of piezoelectric cantilever-pendulum system for multi-directional energy harvesting. J. Intell. Mater. Syst. Struct. 28(30), 323–338 (2017)

    Article  Google Scholar 

  14. Han, N., Cao, Q.J., Wiercigroch, M.: Estimation of chaotic thresholds for the recently proposed rotating pendulum. Int J. Bifurc. Chaos. 23(4), 1350074 (2013) https://doi.org/10.1142/S0218127413500740

    Article  MathSciNet  Google Scholar 

  15. Rossikhin, Y.A.: Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids. Appl. Mech. Rev. 63, 010701-1–010701-12 (2010)

    Google Scholar 

  16. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 63, 010801-1–010801-51 (2010)

    Google Scholar 

  17. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus, Communi Nonlin Sci Num Simul 16, 1140–1153 (2011)

    Article  MathSciNet  Google Scholar 

  18. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529-539 (1967)

    Article  Google Scholar 

  19. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134-47 (1971)

    Article  Google Scholar 

  20. Rossikhin, Y.A., Shitikova, M.V.: Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical system with dam** modelled by a fractional derivative. J. Eng. Math. 37, 343–362 (2000)

    Article  MathSciNet  Google Scholar 

  21. Seredyńska, M., Hanyga, A.: Nonlinear differential equations with fractional dam** with applications to the 1dof and 2dof pendulum. Acta. Mech. 176, 169–183 (2005) https://doi.org/10.1007/s00707-005-0220-8

    Article  Google Scholar 

  22. Hedrih (Stevanović), K.R.: Dynamics of multi-pendulum systems with fractional order creep elements. J. Theoret. Appl. Mech. 46(3), 483–509 (2008)

    Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  24. Hedrih (Stevanović), K.R., Tenreiro Machado, J.A.: Discrete fractional order system vibrations. Intern. J. Non-Lin. Mech. 73, 2–11 (2015)

    Google Scholar 

  25. Diethelm, K.: The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type. Springer-Verlag, Berlin Heidelberg (2010)

    Google Scholar 

  26. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: A selection of numerical methods. Comput. Meth. Appl. Mech. Eng. 194, 743–773 (2005)

    Article  MathSciNet  Google Scholar 

  27. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, W.T.: Numerical recipes in FORTRAN 77: The art of scientific computing. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  28. Chapra, S.C., Canale, R.P.: Numerical methods for engineers. McGraw Hill, Boston (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Freundlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Freundlich, J., Sado, D. (2024). The Effect of Dam** on the Energy Transfer in the Spherical Pendulum with Fractional Dam** in a Pivot Point. In: Awrejcewicz, J. (eds) Perspectives in Dynamical Systems II — Numerical and Analytical Approaches. DSTA 2021. Springer Proceedings in Mathematics & Statistics, vol 454. Springer, Cham. https://doi.org/10.1007/978-3-031-56496-3_14

Download citation

Publish with us

Policies and ethics

Navigation