Ti Implant Surface State After Micro-Arc Oxidation Process

  • Conference paper
  • First Online:
Advances in Manufacturing IV (MANUFACTURING 2024)

Abstract

In this work the anodic oxidation of the titanium has been applied for its surface biofunctionalization. The surface treatment done in 2M H3PO4 + (0–1)%HF electrolyte in broad 30–240 V potential range results in porous morphology and hydrophilic properties. The anodic oxidation done in Micro-Arc Oxidation (MAO) conditions at 180–240 V, confirmed most attractive surface morphology for implant applications. The HF content support surface morphology changes in direction of biofunctionalization. Detected by XPS contaminations introduced during the process, especially positive in the bone regeneration phosphorus content, confirmed the usefulness of the process in dental implant applications. Finally, in terms of surface treatment, the transition from a laboratory flat surface to a real implant was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanawa, T.: Biofunctionalization of titanium for dental implant. Japan. Dent. Sci. Rev. 46, 93–101 (2010)

    Article  Google Scholar 

  2. Radtke, A., Bal, M., Jedrzejewski, T.: Novel titania nanocoatings produced by anodic oxidation with the use of cyclically changing potential: their photocatalytic activity and biocompatibility. Nanomaterials 8, 712-1–712-15 (2018)

    Google Scholar 

  3. Diamanti, M.V., Del Curto, B., Pedeferri, M.: Anodic oxidation of titanium: from technical aspects to biomedical applications. J. Appl. Biomater. Biomech. 9, 55–69 (2011)

    Google Scholar 

  4. Bjursten, L.M., Rasmusson, L., Oh, S., Smith, G.C., Brammer, K.S., **, S.: Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res., Part A 92, 1218–1224 (2010)

    Article  Google Scholar 

  5. Metikoš-Hukowić, M., Kwokal, A., Pijac, J.: The influence of niobum and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24, 3765–3775 (2002)

    Article  Google Scholar 

  6. Beaupre, J.M.: Color treated condition-indicating ultrasonic surgical device and method, Patent USPA 20050273126 (2005)

    Google Scholar 

  7. Hanawa, T.: Metal ion release from metal implants. Mat. Sci. Eng. C24, 745–752 (2004)

    Article  Google Scholar 

  8. Lee, J.-H., Kim, S.-E., Kim, Y.-J., Chi, C.-S., Oh, H.-J.: Effects of microstructure of anodic titania on the formation of bioactive compounds. Mater. Chem. Phys. 98, 39–43 (2006)

    Article  Google Scholar 

  9. Yang, B., Uchida, M., Kim, H.-M., Zhang, X., Kokubo, T.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25, 1003–1010 (2004)

    Article  Google Scholar 

  10. Der-Tau, C., Chang, H.H.: On the conductivity of phosphoric acid electrolyte. J. Appl. Electrochem. 19, 95–99 (1989)

    Article  Google Scholar 

  11. H-H. Huang, Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium, Biomaterials 23 (2002) 59–63

    Google Scholar 

  12. Koper, J.K., Jakubowicz, J.: Corrosion resistance of porous titanium surface prepared at moderate and high potentials in H3PO4/HF electrolytes. Prot. Met. Phys. Chem. Surf. 51, 295–303 (2015)

    Article  Google Scholar 

  13. Krasicka-Cydzik, E.: Tailoring of anodic surface layerproperties on titanium and its implantalloys for biomedical purposes. J. Achievements Mater. Manuf. Eng. 43, 424–431 (2010)

    Google Scholar 

  14. Tsuchiya, H., et al.: Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem. Commun. 7, 576–580 (2005)

    Article  Google Scholar 

  15. Beranek, R., Hildebrand, H., Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 6, B12–B14 (2003)

    Article  Google Scholar 

  16. Brossia, G.A., Cragnolino, C.S.: Effect of palladium on the corrosion behavior of titanium. Corrosion Sci. 46, 1683–1711 (2004)

    Article  Google Scholar 

  17. Koper, J.K., Jakubowicz, J.: Correlation of wettability with surface structure and morphology of the anodically oxidized titanium implants. J. Biomat. Tissue Eng. 4, 459–464 (2014)

    Article  Google Scholar 

  18. Wang, Y., Yu, H., Chen, C., Zhao, Z.: Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Mater. Des. 85, 640–652 (2015)

    Article  Google Scholar 

  19. Koper, J.K., Jakubowicz, J.: Effect of the high voltage anodic oxidation on the titanium corrosion resistance. Solid State Phenom. 227, 479–482 (2015)

    Article  Google Scholar 

  20. Simka, W., et al.: Characterization of passive films formed on titanium during anodic oxidation. Electrochim. Acta 56, 8962–8968 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financed by the Ministry of Education and Science in Poland under the SBAD project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Adamek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adamek, G., Koper, J., Pilch, M., Jakubowicz, J. (2024). Ti Implant Surface State After Micro-Arc Oxidation Process. In: Gorski, F., Păcurar, R., Roca González, J.F., Rychlik, M. (eds) Advances in Manufacturing IV. MANUFACTURING 2024. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-56456-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56456-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56458-1

  • Online ISBN: 978-3-031-56456-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation