Line–Cyclide Intersection and Colinear Point Quadruples in the Double Conformal Model

  • Conference paper
  • First Online:
Advanced Computational Applications of Geometric Algebra (ICACGA 2022)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 445))

  • 56 Accesses

Abstract

In this paper, we look at using the double conformal model for ray tracing and for tool positioning in Computer Numerically Controlled (CNC) machining. In particular, we explore the intersection of a line with a cyclide in the double conformal model, and how to extract the four points from the resulting colinear point quadruple. Further, we show how to directly construct a colinear point quadruple from four points, and we show how to find the line containing the points of a colinear point quadruple. We also briefly touch on barycentric coordinates and affine combinations in DCGA. Finally, we discuss applications of the double conformal model in ray tracing and in CNC machining.

Supported by NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 171.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breuils, S., Nozick, V., Fuchs, L., Sugimoto, A.: Efficient representation and manipulation of quadratic surfaces using geometric algebras, [cs.CG] 5 Mar 2019. ar**v:1903.02444v1

  2. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan-Kaufmann (2007)

    Google Scholar 

  3. Easter, R.B., Hitzer, E. Double conformal geometric algebra. Adv. Appl. Clifford Algebras 27, 2175–2199 (2017). https://doi.org/10.1007/s00006-017-0784-0

  4. Fontijne, D.: Gaigen 2 : a geometric algebra implementation generator. In: GPCE’06. ACM (2006)

    Google Scholar 

  5. Glassner, A.S.: An Introduction to Ray Tracing. Academic Press (1989)

    Google Scholar 

  6. Rees, E.L.: Graphics discussion of the roots of a quartic equation. Am. Math. Monthly 29(2), 51–55 (1992). https://doi.org/10.2307/2972804

  7. Hestenes, D., Li, H., Rockwood, A.: Geometric computing with Clifford algebras. In: Chapter New Algebraic Tools for Classical Geometry, pp. 3–26. Springer, Berlin Heidelberg (2011)

    Google Scholar 

  8. Li, S.X., Jerard, R.B.: 5-axis machining of sculptured surfaces with a flat-end cutter. Comput. Aided Des. 46(3), 165–178 (1994). https://doi.org/10.1016/0010-4485(94)90040-X

  9. Singh, M., Bedi, S., Mann, S.: Tool positioning in five axis machining on a tensor product surface using circular rays. Int. J. Adv. Manuf. Technol. 122, 2887–2898 (2022) . https://doi.org/10.1007/s00170-022-10004-w

Download references

Acknowledgements

This work was funded in part by the National Sciences and Engineering Research Council of Canada and National Natural Science Foundation of China (NSFC) under Grant 51525504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Mann .

Editor information

Editors and Affiliations

Appendices

A Derivation of Affine Combination

An affine combination of two points yields a sphere; the reflection of the point at infinity yields the center of this sphere [2]. In this appendix, we generalize the idea of the affine combination of two CGA points to the affine of an arbitrary number of CGA points.

Lemma A1

Given n vectors \({{\textbf{p}}_{c1}},\dots ,{{\textbf{p}}_{cn}}\), n CGA points, \({\boldsymbol{P}_{C1}},\dots ,{\boldsymbol{P}_{Cn}}\) with \({\boldsymbol{P}_{Ci}}={{\mathcal {D}}1}({{\textbf{p}}_{ci}})\) and n scalars \(a_1,\dots ,a_n\) where \(\sum _{i=1}^n a_i=1\). Then the affine combination

$$\begin{aligned} \boldsymbol{s} = \sum _{i=1}^n a_i {\boldsymbol{P}_{Ci}} \end{aligned}$$

is a sphere centered at \(\sum _{i=1}^n a_i{{\textbf{p}}_{ci}}\) with radius

$$\begin{aligned} \sum _{0<i<j\le n} a_ia_j |{{\textbf{p}}_{ci}}-{{\textbf{p}}_{cj}}|^2. \end{aligned}$$

Proof:

$$\begin{aligned} \boldsymbol{s} = & {} \sum a_i {\boldsymbol{P}_{Ci}}\\ = & {} \sum a_i(\boldsymbol{e}_o + {{\textbf{p}}_{ci}} + {\frac{1}{2}}|{{\textbf{p}}_{ci}}|^2 \boldsymbol{e}_{\infty })\\ = & {} \boldsymbol{e}_o + \sum a_i{{\textbf{p}}_{ci}} + \sum {\frac{1}{2}}a_i |{{\textbf{p}}_{ci}}|^2 \boldsymbol{e}_{\infty }\\ = & {} \boldsymbol{e}_o + \sum a_i{{\textbf{p}}_{ci}} + {\frac{1}{2}}\left| \sum a_i{{\textbf{p}}_{ci}}\right| ^2 \boldsymbol{e}_{\infty } \\ {} & {} - {\frac{1}{2}}\left[ \left| \sum a_i{{\textbf{p}}_{ci}}\right| ^2 - \sum a_i|{{\textbf{p}}_{ci}}|^2 \right] \boldsymbol{e}_{\infty }. \end{aligned}$$

We see that \(\boldsymbol{s}\) has the form of a sphere centered at \(\sum a_i{{\textbf{p}}_{ci}}\). Expanding the coefficient of \(-{\frac{1}{2}}\boldsymbol{e}_{\infty }\) of the last term (the radius of \(\boldsymbol{s}\) squared) in coordinates gives

$$\begin{aligned} \left| \sum a_i{{\textbf{p}}_{ci}}\right| ^2 - \sum a_i|{{\textbf{p}}_{ci}}|^2 = & {} \sum a_i^{\,2}{{\textbf{p}}_{ci}}^{\,2} + \sum _{i<j} 2a_ia_j ({{\textbf{p}}_{ci}}\cdot {{\textbf{p}}_{cj}}) - \sum a_i {{\textbf{p}}_{ci}}^{\,2}\\ = & {} \sum a_i(a_i-1){{\textbf{p}}_{ci}}^{\,2}+ \sum _{i<j} 2a_ia_j ({{\textbf{p}}_{ci}}\cdot {{\textbf{p}}_{cj}})\\ = & {} -\sum a_i\Big (\sum _{j\ne i}a_j\Big ){{\textbf{p}}_{ci}}^{\,2}+ \sum _{i<j} 2a_ia_j ({{\textbf{p}}_{ci}}\cdot {{\textbf{p}}_{cj}})\\ = & {} -\sum _{i,j\ne i} a_ia_j{{\textbf{p}}_{ci}}^{\,2}+ \sum _{i<j} 2a_ia_j ({{\textbf{p}}_{ci}}\cdot {{\textbf{p}}_{cj}})\\ = & {} \sum _{i,j> i} \left( -a_ia_j {{\textbf{p}}_{ci}}^{\,2} +2a_ia_j ({{\textbf{p}}_{ci}}\cdot {{\textbf{p}}_{cj}})-a_ia_j{{\textbf{p}}_{cj}}^{\,2}\right) \\ = & {} -\sum _{i<j} a_ia_j ({{\textbf{p}}_{ci}}-{{\textbf{p}}_{cj}})^2. \end{aligned}$$

Note that \(\boldsymbol{e}_o\) and \(\boldsymbol{e}_{\infty }\) in this section are 1-blades.

B Affine Combination in DCGA

We can compute an affine combination of DCGA points by converting them to CGA1 and CGA2 points, computing an affine combination of these CGA points (given a CGA1 sphere and a CGA2 sphere), and taking the outer product of these two sphere.

Theorem B1

Given n DCGA points, \({\boldsymbol{P}_{D1}},\dots ,{\boldsymbol{P}_{Dn}}\) with \({\boldsymbol{P}_{Di}=\boldsymbol{P}_{C^1_i}\wedge \boldsymbol{P}_{C^2_i}}\) and n scalars \(a_1,\dots ,a_n\) where \(\sum _{i=1}^n a_i=1\). Then the affine combination

$$\begin{aligned} \boldsymbol{s} = \boldsymbol{s}_1\wedge \boldsymbol{s}_2 = & {} \sum _{i=1}^n a_i {\boldsymbol{P}_{C^1_i}}\wedge \sum _{i=1}^n a_i {\boldsymbol{P}_{C^2_i}} \\ = & {} \sum _{i=1}^n a_i (-{\boldsymbol{P}_{Di}}\cdot \boldsymbol{e}_{\infty 2})\wedge \sum _{i=1}^n a_i (-{\boldsymbol{P}_{Di}}\cdot \boldsymbol{e}_{\infty 1}) \\ = & {} a_1^2{\boldsymbol{P}_{D1}}+a_2^2{\boldsymbol{P}_{D2}}+\dots a_n^2{\boldsymbol{P}_{Dn}}+a_1a_2{\boldsymbol{P}_{C^1_1}}{\boldsymbol{P}_{C^2_2}}+\dots +a_ia_j{\boldsymbol{P}_{C^1_i}}{\boldsymbol{P}_{C^2_j}} \end{aligned}$$

is a DCGA sphere centered at \(\sum _{i=1}^n a_i{{\textbf{p}}_{c^1_i}}\wedge \sum _{i=1}^n a_i{{\textbf{p}}_{c^2_i}}\) with radius

$$\begin{aligned} \sum _{0<i<j\le n} a_ia_j |{{\textbf{p}}_{c^1_i}}-{{\textbf{p}}_{c^1_j}}|^2. \end{aligned}$$
$$\begin{aligned} \boldsymbol{s}_1 = & {} \sum a_i {\boldsymbol{P}_{C^1_i}}\\ = & {} \sum a_i(\boldsymbol{e}_{o1} + {{\textbf{p}}_{c^1_i}} + {\frac{1}{2}}|{{\textbf{p}}_{c^1_i}}|^2 \boldsymbol{e}_{\infty 1})\\ = & {} \boldsymbol{e}_{o1} + \sum a_i{{\textbf{p}}_{c^1_i}} + \sum {\frac{1}{2}}a_i |{{\textbf{p}}_{c^1_i}}|^2 \boldsymbol{e}_{\infty 1}\\ = & {} \boldsymbol{e}_{o1} + \sum a_i{{\textbf{p}}_{c^1_i}} + {\frac{1}{2}}\left| \sum a_i{{\textbf{p}}_{c^1_i}}\right| ^2 \boldsymbol{e}_{\infty 1} \\ {} & {} - {\frac{1}{2}}\left[ \left| \sum a_i{{\textbf{p}}_{c^1_i}}\right| ^2 - \sum a_i|{{\textbf{p}}_{c^1_i}}|^2 \right] \boldsymbol{e}_{\infty 1}\\ \boldsymbol{s}_2 = & {} \sum a_i {\boldsymbol{P}_{C^2_i}}\\ = & {} \sum a_i(\boldsymbol{e}_{o2} + {{\textbf{p}}_{c^2_i}} + {\frac{1}{2}}|{{\textbf{p}}_{c^2_i}}|^2\boldsymbol{e}_{\infty 2})\\ = & {} \boldsymbol{e}_{o2} + \sum a_i{{\textbf{p}}_{c^2_i}} + \sum {\frac{1}{2}}a_i |{{\textbf{p}}_{c^2_i}}|^2\boldsymbol{e}_{\infty 2}\\ = & {} \boldsymbol{e}_{o2} + \sum a_i{{\textbf{p}}_{c^2_i}} + {\frac{1}{2}}\left| \sum a_i{{\textbf{p}}_{c^2_i}}\right| ^2\boldsymbol{e}_{\infty 2} \\ {} & {} - {\frac{1}{2}}\left[ \left| \sum a_i{{\textbf{p}}_{c^2_i}}\right| ^2 - \sum a_i|{{\textbf{p}}_{c^2_i}}|^2 \right] \boldsymbol{e}_{\infty 2}\\ \boldsymbol{s}_1\wedge \boldsymbol{s}_2 = & {} {\boldsymbol{P}'_{C1}}\wedge {\boldsymbol{P}'_{C2}} -{\frac{1}{2}}{\boldsymbol{P}'_{C1}}R^2\boldsymbol{e}_{\infty 2}-{\frac{1}{2}}{\boldsymbol{P}'_{C2}}R^2 \boldsymbol{e}_{\infty 1}+\frac{1}{4}R^4 \boldsymbol{e}_{\infty } \end{aligned}$$

where

$$\begin{aligned} {\boldsymbol{P}'_{C1}} = & {} \boldsymbol{e}_{o1} + \sum a_i{{\textbf{p}}_{c^1_i}} + {\frac{1}{2}}\left| \sum a_i{{\textbf{p}}_{c^1_i}}\right| ^2 \boldsymbol{e}_{\infty 1}\\ {\boldsymbol{P}'_{C2}} = & {} \boldsymbol{e}_{o2} + \sum a_i{{\textbf{p}}_{c^2_i}} + {\frac{1}{2}}\left| \sum a_i{{\textbf{p}}_{c^2_i}}\right| ^2\boldsymbol{e}_{\infty 2}\\ R^2 = & {} \left| \sum a_i{{\textbf{p}}_{c^1_i}}\right| ^2 - \sum a_i|{{\textbf{p}}_{c^1_i}}|^2 \end{aligned}$$

As in CGA, we can reflect the DCGA point at infinity through this DCGA sphere to obtain the point form of the affine combination: \(\boldsymbol{s}\,\boldsymbol{e}_{\infty }\,\boldsymbol{s}^{-1}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, H., Mann, S., Li, Q. (2024). Line–Cyclide Intersection and Colinear Point Quadruples in the Double Conformal Model. In: Araujo Da Silva, D.W.H., Hildenbrand, D., Hitzer, E. (eds) Advanced Computational Applications of Geometric Algebra. ICACGA 2022. Springer Proceedings in Mathematics & Statistics, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-55985-3_4

Download citation

Publish with us

Policies and ethics

Navigation